2017年西南大学材料科学基础考研复试核心题库
● 摘要
一、名词解释
1. 科垂尔气团(CottrellAtmosphere )
【答案】科垂尔气团是溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产生固溶强化效应等结果。
2. 空间点阵
【答案】为了便于分析研宄晶体中质点的排列规律性,可将实际晶体结构看成完整无缺的理想晶体并简化,将其中每个质点抽象为规则排列于空间的几何质点,称之为阵点。这些阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵。
二、简答题
3. 指出合金强化的四种主要机制,解释强化原因。
【答案】(1)合金强化的四种主要机制为固溶强化、沉淀强化和弥散强化、晶界强化、有序强化。
(2)强化原因
①固溶强化
固溶在点阵间隙或结点上的合金元素原子由于其尺寸不同于基体原子,故产生一定的应力场,阻碍位错运动;柯氏气团和铃木气团,前者是间隙原子优先分布于BCC 金属刃型位错的拉应力区,对位错产生钉扎作用,后者是合金元素优先分布于FCC 金属扩展位错的层错区,降低层错能,扩大层错区,使扩展位错滑移更加困难。
②沉淀强化和弥散强化
合金通过相变过程得到的合金元素与基体元素的化合物和机械混掺于基体材料中的硬质颗粒都会引起合金强化,分别称之为沉淀强化和弥散强化。沉淀强化和弥散强化的效果远大于固溶强化。位错在运动过程中遇到第二相时,需要切过(沉淀强化的小尺寸颗粒和弥散强化的颗粒)或者绕过(沉淀强化的大尺寸颗粒)第二相,因而第二相(沉淀相和弥散相)阻碍了位错运动。 ③晶界强化
按照Hall-Petch 公式,
屈服点
④有序强化
有序合金中的位错是超位错,要使金属发生塑性变形就需要使超位错的两个分位错同时运动,因而需要更大的外应力。异类元素原子间的结合力大于同类元素原子间的结合力,所以异类原子的有序排列赋予有序合金较高的强度。
同晶粒直径d 之间的关系是其实质是位错越过晶界需要附加的应力。因此低温用钢往往采用细晶粒组织。
4. 写出图所示立方晶胞中ABCDA 晶面及BD 晶向的密勒指数。
图
;BD 晶向:【答案】ABCDA 晶面:(Oil )
5. 画出立方晶系的[100]、[101]晶向的(111)、晶面。
【答案】如图所示。
晶面及六方晶系的晶向、(0001)
图
6. 从材料组织结构对性能影响的角度,定性分析比较金属材料、陶瓷材料、高分子材料在力学性能方面的差异。
【答案】在这三类材料中,其力学性能特点分别是:
(1)金属材料:优异的塑性和韧性,较高的强度和硬度,较大的弹性和较高的弹性模量;
,极小的弹(2)陶瓷材料:塑性和初性几乎为零,极高的硬度和较低的强度(特别是抗拉强度)
性和极大的弹性模量;
(3)高分子材料:较高的塑性和軔性,较低的硬度和强度,极大的弹性和极小的弹性模量。 这三类材料在力学性能方面的上述差异,主要是由这三类材料在组织结构方面的特点不同所造成
的。
(1)材料的弹性及弹性模量主要取决于材料中原子结合键的强弱。其中①陶瓷材料为共价键和离子键,结合键力最强,因此其弹性模量最高但弹性最小;②高分子材料的分子链中为很强的共价键,但分子链之间为很弱的氢键和范德华键,因此其弹性模量最低但弹性最好;③金属材料为较强的金属键结合,故其弹性模量和弹性居中。
(2)材料的硬度也主要取决于材料中原子结合键的强弱。所以,陶瓷材料有极高的硬度,而高分子材料的硬度很低。
(3)材料的强度既与结合键有关也与组织有关。①陶瓷材料虽然有很强的结合键,但由于烧结成形中不可避免地形成气孔或微裂纹,故其强度特别是抗拉强度较低;②高分子材料中很弱的氢键和范德华键使其强度也较低;③金属材料中的金属键虽然不是很强,但高的致密度以及高密度的位错使其具有很高的强度。
(4)材料的塑形与韧性方面,①金属材料中的自由电子云和容易运动的位错以及较高的致密度,使其具有良好的塑性和韧性;②陶瓷材料中的位错不易运动,加之存在气孔和微裂纹,因而陶瓷材料的塑性和軔性几乎为零;③高分子材料中很弱的氢键和范德华键使分子间可以较好地相互滑动,因而有较好的塑性和軔性。
7. 杂质掺杂从哪几个方面影响扩散系数?
【答案】(1)杂质原子的掺杂会使其化学成分发生变化,杂质原子的引入使系统热力学稳定性降低从而降低扩散活化能。
(2)生成空位和填隙。晶体中存在着空位,这些空位的存在使原子迁移更容易。在间隙扩散机制中,原子从一个晶格中间隙位置迁移到另一个间隙位置达到扩散的目的。所以杂质原子既生成空位提高扩散系数,又填隙降低了扩散系数,是一个动态平衡。
8. 简述回复再结晶退火时材料组织和性能变化的规律;为何实际生产中常需要再结晶退火?
【答案】(1)回复再结晶时材料组织变化:该退火过程主要分为回复、再结晶和晶粒长大三个阶段。在回复阶段,由于发生大角度晶界迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学组织上几乎看不出变化。在再结晶阶段,首先是在畸变度大的趋于产生新的无畸变晶粒核心,然后逐渐消耗周围的变形机体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。最后,在表面晶界能的驱动下,新的晶粒互相吞食长大,从而得到在该条件下一个比较稳定的尺寸。
(2)回复再结晶时材料性能变化:在回复阶段,由于金属仍保持很高的位错密度,所以强度和硬度变化很小,但是再结晶后,位错密度显著降低,从而导致强度与硬度明显下降;回复阶段,由于晶体点阵中点缺陷的存在,使电阻明显下降,电阻率明显提高;回复阶段,大部分或全部的宏观内应力可以消除,而微观内应力则只有通过再结晶方可全部消除;回复前期,亚晶粒尺寸变化不大,但在后期,尤其接近再结晶时,亚晶粒尺寸就显著增大;变形金属的密度在再结晶阶段发生急剧増高。
相关内容
相关标签