2018年江西师范大学心理学院312心理学专业基础综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 分层随机抽样
【答案】分层随机抽样是抽样方式的一种。按照总体已有的某些特征,将总体分成几个不同的部分(层),再分别在每部分中随机抽样,这种抽样的方法称为分层随机抽样。总原则是:各层内的变异要小,层与层间的变异越大越好。分层抽样充分利用了总体己知的信息,其样本代表性及推论的精确性一般优于简单随机抽样。对于同一总体,n 相同时,分层抽样误差小于简单随机抽样误差。
2. 抽样误差
【答案】抽样误差指由抽样而造成的样本参数与总体参数之间差异或各样本参数之间差异。比如:样本平均数与总体平均数之间差异或各样本平均数之间差异。在抽样研究中,抽样误差是不可避免的,但可以估计其大小。
3. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
4. 集中量数与差异量数
【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。
二、简答题
5. 试解释交互作用。
【答案】(1)下面是两个2×2的实验设计范式:
图1 2×2实验设计图示例
在实验甲中,A 因素从变化
为
还是时,无论
在还
是水平
,
与的差都
是说明A 因素的变化与或
称之为没有交互作用。
在实验乙中,在时时在时在时表明A 因素的变化与B 因即B 因素的变化与A 因素的不同水平有关;同样在无关。同样B 因素从变化为时,无论水平上,都等于3, 说明B 因素的变化与或无关。因此A ,B 两个因素彼此不影响,
素的水平也有关。在这种情况下,要考虑A ,B 两个因素的彼此影响,即“交互作用”,用AXB 表示。运用多因素方差分析,不仅能检验出各个因素对因变量的影响,还可以检验出因素与因素相结合共同发生的影响,即这种交互作用。
如要直观分析两个因素间是否有交互作用,还可以将上述情况制作成交互作用图,如图2所示。用图来表示交互作用时,一个是比较折线位置的高低,一个是比较折线在不同折点上的变化。基本原则是观察折线之问的平行程度。一般在交互作用图中,如果A , B 二因素间没有交互作用,则两线平行,表示因素之间相互独立;两线越不平行,代表因素之间交互作用越明显。一般而言,显著的交互作用,在交互作用图上会出现交叉的折线。当然,这只是直观示意,交互作用是否显著,必须进行方差分析。
图2 交互作用图解
6. 某厂要进行压力的性别差异的研究,但由于工厂不大就把男女员工的数据都收集来了,那么应该用什么方法看性别间有否差异呢?
【答案】可以用独立样本t 检验进行性别间差异检验。
首先可以从样本的抽样方面考虑这个工厂在数据采集上的科学性。
抽样调查也会遇到调查的误差和偏误问题。通常抽样调查的误差有两种:一种是工作误差
(也称登记误差或调查误差),一种是代表性误差(也称抽样误差)。另外,由于调查单位少,代表性强,所需调查人员少,工作误差比全面调查要小。特别是在总体包括的调查单位较多的情况下,抽样调查结果的准确性一般高于全面调查。因此,抽样调查的结果是非常可靠的。但是抽样调查得遵循一定的原则:
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。而且抽样过程中样本要能代表总体,不能随便挑选。
因此,这个工厂在进行性别差异的研究中,没有考虑抽样的科学性原则。这样得出的结果只能代表这个工厂的情况,而缺乏推论价值。
7. 简述编制分组次数分布表的步骤。
【答案】(1)求全距。全距指最大数和最小数两个数据值之间的差距。从被分组的数据中找出最大数和最小数,二者相减所得差数就是全距。
(2)决定组距与组数。组距是指任意一组的起点和终点之间的距离,用符合i 表示。决定组距的大小需要以全距为参考。全距大,则组距可以大一些;全距小,则组距可以小一些。
组数的多少根据组距的多少来定。如果数据个数在100以上,习惯上一般分10〜20组,但经常取12〜16组。数据个数较少时,一般分为7〜9组。如果数据的总体分为正态,那么可以用下面的经验公式计算组数(K ),这样可使分组满足渐进最优关系。
为数据个数,K 取近似整数)。
(3)列出分组区间。分组区间即一个组的起点值和终点值之间的距离,又叫组限。起点值称为组下限,终点值称为组上限,组限有表述组限和精确组限两种。在列出分组区间时要注意:最高组区间应包含最大的数据,最小组应包含最小的数据;最大组或最小组最好是组距i 的倍数;各分组区间一般在纵坐标上按照顺序排列,数值大的分组区间排在上面,数值小的分组区间排在下面;等级次数时,要按照精确组限将数据归类划分到相应的组别中。
(4)等级次数。依次将数据等级到各个相应的组别内,一般用画线计数或写“正”字的方法。
(5)计算次数。根据登记的结果计算各组的次数,计算各组次数的总和即总次数。另外,要核对各组次数总和与数据的总个数是否相等。
8. 为什么要做区间估计?怎样对平均数作区间估计?
【答案】(1)做区间估计是因为
①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。
这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。
(N
相关内容
相关标签