2018年西南大学心理学部312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
2. 逐步回归
【答案】逐步回归是多元回归中选择自变量,建立最优回归方程的一种方法。其基本原理和过程是:按各个自变量对因变量作用的大小,从大到小逐个引入回归方程。每引入一个自变量都要对回归方程中每一个自变量(包括刚刚引入的那个)的作用进行显著性检验,若发现作用不显著的自变量,就要将其剔除(因为引入新的自变量后,原来方程中显著作用的自变量有可能变成不显著)。这样逐个地引进和剔除,直至没有自变量可引入也没有自变量应从方程中剔除为止,这时的回归方程一般来说是最优的。
3. 古典概率
【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。
4. 样本
【答案】样本(sample )亦称“子样”,统计学术语,指按一定规则从统计总体中抽取的若干个体的集合或对总体X 的n 次观测结果
独立样本。
第 2 页,共 35 页 根据样本容量(通常以30为界线)的大小,可区分为大样本和小样本。根据两样本来自的两总体是相关还是独立,可分为相关样本和
二、简答题
5. 如果两总体中的所有个体都进行了智力测验,这两个总体智商的平均数差异是否还需要统计检验?为什么?
【答案】如果两个中体中的所有个体都进行了智力测验,这两个总体的智商的平均数差异还是需要进行统计检验。
因为,虽然表面上看来,当抽取全部总体时,样本统计量与总体参数相同。但是作为通过测量获得的数据(智力测验)本身就是通过行为抽样获得,因此应该把两总体的智商差异看作是对智商真值之间差异的抽样,因此还是需要进行统计检验的。
当两总体中的所有个体都进行了智力测验,但不能确定两个总体的分布的时候,直接做两个总体智商的平均数差异检验是不合适的。
智力测验中一般可以获得描述性统计数据。描述统计的方法获得了一组数据的集中量数,差异量数和相关量数(常称为样本统计量),它们仅代表了某一总体中的样本所具有的特征,在进行检验前,我们并不了解样本来自的总体是否具有相同的数值特征(总体中的相应数值称为参数,总体均值记为…总体标准差记为
进行推断,以获得总体的有关特征。
检验两个总体的平均数差异不仅要考虑总体分布和总体方差,还需要注意两个总体方差是否一致,两个样本是否相关以及两个样本容量是否相同等条件。两个总体均值差异的显著性检验是通过来自均值相同的总体的样本平均数差异进行推断的。因此,两个总体均值差异的显著性检验也就是检验两个样本平均数是否来自均值相同的总体。由于两个总体之间有时是相关的,有时是独立的,因此平均数差数的显著性检验也有不同的方法。
6. 何谓次数、频率及概率?
【答案】(1)次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ),用f 表示。
(2)频率,又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。频率通常用比例(proportion )或百分数(percent )表示。
(3)概率又称机率、或然率(probability ),用符号P 表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率。概率通常用比例表示。
7. 正态分布的特征是什么,统计检验中为什么经常要将正态分布转化成标准正态分布?
【答案】正态分布也称常态分布或常态分配。是连续随机变量概率分布的一种。描述正态分布曲线的一般方程为:
第 3 页,共 35 页 总体相关系数记为P )。然而,心理研究的目的是要了解样本来自的总体的特征。为此,可以运用参数统计检验法依据样本的特征对总体的特征
式中:是圆周率3.1415…
是自然对数的底2.71828…
为随机变量取值为理论平均数
为理论方差
为概率密度,即正态分布的纵坐标。
(1)正态分布的特征
①正态分布的形式是对称的,它的对称轴是经过平均数点的垂线,正态分布中,平均数、中数、众数三者相等,此点y 值最大(0.3989)。左右不同间距的y 值不同,各相当间距的面积相等,y 值也相等。
②正态分布的中央点(即平均数点)最高,然后逐渐向两侧下降,曲线的形式是先向内弯,然后向外弯,拐点位于正负1个标准差处,曲线两端向靠近基线处无限延伸,但终不能与基线相交。
③正态曲线下的面积为1, 由于它在平均数处左右对称,故过平均数点的垂线将正态曲线下的面积划分为相等的两部分,即各为0.50。正态曲线下各对应的横坐标(即标准差)处与平均数之间的面积可用积分公式计算。因正态曲线下每一横坐标所对应的面积与总面积(总面积为1)之比其值等于该部分面积值,故正态曲线下的面积可视为概率,即值为每一横坐标值(x 加减一定标准差)的随机变量出现的概率。
④正态分布是一族分布。它随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。如果平均数相同,标准差不同,这时标准差大的正态分布曲线形式低阔;如果标准差小,则正态曲线的形式高狭。
⑤正态分布下,标准差与概率有一定数量关系。
(2)统计检验中经常将正态分布转化为标准正态分布是因为标准正态分布的Z 分数不仅能表明原始分数在分布中的地位,而且能在不同分布的各个原始分数之间进行比较,同时,还能用代数方法处理,因此,它被教育统计学家称为“多学科表示量数”,有着广泛的用途。
①用于比较几个分属性质不同的观测值在各自数据分布中相对位置的高低。
Z 分数可以表明各个原始数据在该组数据分布中的相对位置,它无实际单位,可对不同的观测值进行比较。这里所说的数据分布中相对位置包括两个意思,一个是表示某原始数据以平均数为中心以标准差为单位所处距离的远近与方向;另一个意思是表示某原始数据在该组数据分布中的位置, 即在该数据以下或以上的数据各有多少。如果在一个正态分布(或至少是一个对称分布)中,这两个意思可合二为一。但在一个偏态分布中,这两个意思就不能统一。
第 4 页,共 35 页