当前位置:问答库>考研试题

2018年哈尔滨工业大学威海校区833量子力学考研仿真模拟五套题

  摘要

一、简答题

1. 斯特恩—革拉赫实验证明了什么? 【答案】(1)半整数内禀角动量在存在。 (2)空间量子化的事实。

(3)电子自旋磁矩需引入2倍关系。

2. 写出在表象中的泡利矩阵。 【答案】

3. 解释量子力学中的“简并”和“简并度”。

【答案】一个能级对应多个相互独立的能量本征函数的现象称为“简并”;一个能级对应的本征函数的数目称为“简并度”。

4. 分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

5. 写出泡利矩阵。 【答案】

6. 什么是隧道效应,并举例说明。

【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。

7.

写出角动量的三个分量【答案】这三个算符的对易关系为

的对易关系.

8. 写出测不准关系,并简要说明其物理含义。 【答案】测不准关系

物理含义:若两个力学量不对易,则它们不可能同

时有确定的测值。

9. 分别写出非简并态的一级、二级能量修正表达式。 【答案】

10.量子力学中的可观测量算符为什么应为厄米算符?

【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。

二、证明题

11.(1)设(2)试将【答案】(1)

与pauli 算符对易,证明

表示成

的线性叠加. 其中为单位算符.

利用

化简可得:

(2)

12.证明,

【答案】因为

可得:

三、计算题

13.对于自旋的体系,求量

的概率和

的本征值和本征态,并在较小的本征值对应的本征态中,求测

的平均值。

设本征态

本征值为则:

【答案】

将代回原方程:

即:

所以,因此有:

同理可得:

的本征态

所以在

态中测量

的几率为:

14.自旋为时,粒子处于(2)求出t >0时

固有磁矩为

的状态。

的可测值及相应的取值几率。

(其中为实常数)的粒子,处于均匀外磁场

中,设t=0

(1)求出t >0时的波函数; 【答案】(1)体系的哈密顿算符为在泡利表象中,哈密顿算符的本征解为:在t= 0时,粒子处于为了求出

的状态,即

在泡利表象中的具体形式,需要求解满足的本征方程: