2018年厦门大学统计系432统计学[专业硕士]考研强化五套模拟题
● 摘要
一、简答题
1. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
2. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。
【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。 单因素方差分析的步骤为:
(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。
(2)构造检验统计量,计算各样本均值(3)计算样本统计量
(4
)统计决策。比较统计量 的值。若
第 2 页,共 51 页 样本总均值误差平方和 拒绝原假设;反之,不能
拒绝原假设。
3. 说明回归模型的假设以及当这些假设不成立时的应对方法。
【答案】(1)多元回归模型的基本假定有: ①自变量
③对于自变
量
④误差项是一个服从正态分布的随机变量,且相互独立,即
(2)若模型中存在多重共线性时,解决的方法有:
第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。
第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。
若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性
,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。
若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。
4. 简述假设检验的过程。
【答案】假设检验的过程如下:
(1)根据所研宄问题的要求提出原假设(或称为零假设、无效假设)和备择假设确定显著性水平。显著性水平为拒绝假设检验是犯第一类错误的概率。
(2)选择合适的检验方法,确定适当的检验统计量,确定统计量的分布,并由假设计算其数值。
(3)根据统计量确定值,做出统计推断。根据计算的统计量,查阅相应的统计表,确定值,以值与显著性水平比较,若
5. 简述判定系数的含义和作用。
则拒绝接受
若则不拒绝 是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方
差都相同,且不序列相关,
即
的所有
值②误差项s 是一个期望值为0的随机变量,即
第 3 页,共 51 页
【答案】(1)判定系数的含义
回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
(2)判定系数的作用
判定系数测度了回归直线对观测数据的拟合程度。若所有观测点都落在直线上,残差平方
和
可见
x 完全无助于解释y 的变差,拟合是完全的;如果y 的变化与x 无关,此时
的取值范围是则
越接近于7,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来解释y 值变差的部分就越多,回归直线的拟合程度就越好;反之越接近于0, 回归直线的拟合程度就越差。
6. 中心极限定理。
【答案】设随机变量相互独立(S 卩,对任意给定的
相互独立)且服从同一分布,该分布存在有限的期望和方
差
令
则
也就是说,当n 趋于无穷大时,的分布趋向于标准正态分布
7. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?
【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。
8. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?
【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为
由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性
第 4 页,共 51 页 势必增大
相关内容
相关标签