2016年西华师范大学物理与空间科学学院专业综合之量子力学复试笔试最后押题五套卷
● 摘要
一、简答题
1. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
2. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。
3. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量
用算符表示,
当体系处于某个能量态
4. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
的作用是得到这一本征值,即
当体系处于一般态
的本征态
时,算符对
的作
时,算符对态
,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)
二、计算题
5. 粒子在势场作【
答
案
】
利
用
波
函
数
的
由
得:
归
一
化
公
式
中运动,其中
试用变分法求基态能级的上限。试探波函数可取
重新代入表达式,得:
故基态能量的上限为:
6. 二电子体系中,
总自旋【答案】(
写出()的归一化本征态(即自旋单态与三重态)。
)的归一化本征态记为则自旋单态为:
自旋三重态为:
7. 对于自旋的体系,求量
得
的概率和
的本征值和本征态,并在较小的本征值对应的本征态中,求测
的平均值。
设本征态
本征值为则:
【答案】
将代回原方程:
即:
所以,因此有:
同理可得:
的本征态
所以在
态中测量
的几率为: