当前位置:问答库>考研试题

2017年东南大学物理系715量子力学考研仿真模拟题

  摘要

一、简答题

1. 量子力学中的力学量算符有哪些性质? 为什么需要这些性质?

【答案】量子力学中力学量算符为厄米算符,因而具有所有厄米算符的性质.

量子力学中力学量算符为厄米算符是由力学量算符本征值必须为实数决定的,比如,力学量的平均值为实数,因而对求平均值的式子求共轭后,其值应该不变,而求平均值时算符求共轭后式子值不变即要求算符为厄米算符.

2. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量

用算符表示,

当体系处于某个能量态

的作用是得到这一本征值,即

当体系处于一般态

的本征态

时,算符对

的作

时,算符对态

,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)

3. 简述波函数的统计解释。

【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

4. 描写全同粒子体系状态的波函数有何特点?

【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。

5. 自发辐射和受激辐射的区别是什么?

【答案】自发辐射是原子处于激发能级时,可能自发地跃迁到较低能级去,并发射出光子的过程;

受激辐射是处于激发能级低能级

的原子被一个频率为

的光子照射,受激发而跃迀到较

同时发射出一个同频率的受激光子的过程。受激辐射的光子是相干的,自发辐射是随机

的。

6. 试表述量子态的叠加原理并说明叠加系数是否依赖于时空变量及其理由. 【答案】量子态的叠加原理:若仍然为粒子可能处于的态.

叠加系数不依赖于时空变量. 因为量子态的叠加原理已经明确说明了是任意线性组合,即表明了叠加系数不依赖于任何变量.

7. 电子在位置和自旋表象下,波函数【答案】

利用

如何归一化?解释各项的几率意义。

进行归一化,其中

第 2 页,共 51 页

为粒子可能处于的态,那么这些态的任意线性组合

表示粒子在

|处

的几率密度;

8.

写出角动量的三个分量

表示粒子在处的几率密度。

的对易关系.

【答案】这三个算符的对易关系为

9. 如果一组算符有共同的本征函数,且这些共同的本征函数组成完全系,问这组算符中的任何一个是否和其余的算符对易? 【答案】不妨设这组算符为

.

则对任意波函数

完全系为有:

可见,这组算符中的任何一个均和其余的算符对易。

10.波函数是用来描述什么的?它应该满足什么样的自然条件?么?

【答案】波函数是用来描述体系的状态的复函数,除了应满足平方可积的条件之外,它还应该是单值、有限和连续的。

表示在时刻附近

体积元中粒子出现的几率密度。

依题意

的物理含义是什

二、证明题

11.证明么正变换不改变算符的本征值。

【答案】设在某一表象下,一个幺正变换的矩阵表示为S 。对任意算符,其在该表象下的矩阵表示为F , 则对其进行么正变换后的矩阵表示为:

由于相似变换不改变矩阵本征值,故与F 本征值相同,因此么正变换不改变算符本征值。

12.试证明,表象经么正变换后,不改变算符本征值。 【答案】设可得:

(其中

为幺正变换,则:

可见,本征值不变。

三、计算题

第 3 页,共 51 页

13.若两个中子的相互作用哈密顿为是什么。(设没有外场)

【答案】解法一:

设总自旋

则:

其中g 为作用常数,和分别为两个中子的自

旋算符, 求分的本征值和本征函数。如果同时计入中子的空间波函数,则两中子体系的总波函数

而两中子的自旋波函数只有四种情况(即有4个本特征态)。 自选交换对称波函数:

自旋交换反对称波函数:

显然

对易,二者有共同的本征态:

即的本征值为

的对应波函数为

即的本征值为解法二:选择的本征态为对应特征值因为

时对应的函数为

表象(因为

(对应特征值的本征态,

,)

对应本征值

相互对易)。

(对应本征值

本征态为

)。

对易,所以两中子的体系的波函数可以由的本征态的乘积构成如下四种情

况(结合全同粒子满足的波函数的对称性要求):

自旋交换对称态:

第 4 页,共 51 页