当前位置:问答库>考研试题

2018年东北大学工商管理学院852运筹学考研强化五套模拟题

  摘要

一、简答题

1. 试写出M/M/1排队系统的Little 公式。

【答案】M/M/1排队系统的Little 公式为

2. 简述割平面法的基本思想。

【答案】这个方法的基础仍然是用解线性规划的方法去解整数规划问题,首先不考虑变量xi 是整数这一条件, 但增加线性约束条件(用几何术语,称为割平面)使得由原可行域中切割掉一部分,这部分只包含非整数解,但没有切割掉任何整数可行解。这个方法就是指出怎样找到适当的割平面(不见得一次就找到),使切割后最终得 到这样的可行域,它的一个有整数坐标的极点恰好是问题的最优解。

3. 用表上作业法解运输问题时,在什么情况下会出现退化解? 当出现退化解时如何处理?

【答案】当运输问题某部分产地的产量和,与某一部分销地的销量和相等时,在迭代过程中间有可能在某个格填入一个运量时需同时划去运输表的一行和一列,这时就出现了退化。

当出现退化时,为了使表上作业法的迭代工作能顺利进行下去,退化时应在同时划去的一行或一列中的某个 格中填入数字0,表示这个格中的变量是取值为0的基变量,使迭代过程中基变量个数恰好为(m+n-l)个。

二、证明题

4. 设m*m对策的矩阵为

其中,当时,当i=j时,证明此对策的最优策略为

【答案】由题意知,

,所以A 没有鞍点,

故令最优混合策略,则

5. 设线性规划问题1是

)是其对偶问题的最优解。

又设线性规划问题2是

其中k i 是给定的常数,求证

【答案】问题1的矩阵表示为

其中

问题2的矩阵表示为

设X 1 为它的一个可行解,其对偶问题的最优解为

其中

问题1的对偶问题为

问题2的对偶问题为

=

由此可知,问题1的对偶问题与问题2的对偶问题有相同的约束条件,所以问题1的对偶问题的最优解

一定是问题2的对偶问题的一个可行解。

设X 2 为它的一个可行解,其对偶问题的最优解为Y 2

又因为Y 2是问题2对偶问题的最优解,所以,因为原问题与对偶问题的最优值相等,所以

6. 对于M/M/1/N/∞模型,试证

,并对上式给予直观的解释。