当前位置:问答库>考研试题

2018年清华大学物理系841量子力学考研仿真模拟五套题

  摘要

一、计算题

1. 设一维简谐振子的初始(t=0)波函数为

为简谐振子的三个(n=0, 1,2)最低能量的定态波函数. 试求 (1)系数A = ? (2)t 时刻的波函数(3)t 时刻的能量平均值.

【答案】(1)由波函数的正交归一化条件有

其中

(2) —维谐振子能量为故

t 时刻波函数为

(3)

各自对应概率为

7

均与时间无关,故t 时刻粒子能量平均值为

2. 在动量表象中,写出线谐振子的哈密顿算符的矩阵元。 【答案】在坐标表象中,线谐振子的哈密顿算符为:在动量表象中,该哈密顿算符为:

第 2 页,共 47 页

由于动量的本征函数为

故哈密顿算符的矩阵元为:

3. 已知(1)利用(2)求

的本征态

是泡利矩阵,表象中的表达式,求

可由

的本征态经绕x 轴转动

表象中的本征态矢

试由此

角的坐标变换而得,即

表象的表达式,并与(1)所得结果比较。

【答案】(1)易知:

本征矢

(2)由题意可得:

同理,可得:

可见,两种方法得到的本征态相同。

4. 氢原子处于状态(1)求轨道角动量的z

分量

的平均值。

(2)求自旋角动量的z

分量的平均值。

第 3 页,共 47 页

(3)求总磁矩【答案】⑴

的z 分量

的平均值。

5. 自旋在

方向的粒子,磁矩为置于沿z

方向的磁场中,写出其哈密顿量,并求其

概率幅与时间的关系。 【答案】将上述自旋在

方向的粒子(譬如电子)置于沿z 方向的磁场B 中观察其概率幅的

变化。这时的哈密顿矩阵为:

式中,

是泡利矩阵,

为粒子的磁矩。电子负电,从而自旋磁矩

与角动量的方

向相反。当自旋角动量和磁场同沿z 方向时,磁矩沿-z 方向。 可得薛定谔方程为:

即:

积分后得:

取t=0时刻的初始条件为则:

式中,

围绕极轴转动,相

由上式可以看出,粒子的自旋矢量始终与极轴保持固定的夹角但以角速度

第 4 页,共 47 页