当前位置:问答库>考研试题

2017年辽宁工程技术大学工业工程(专业学位)828运筹学考研导师圈点必考题汇编

  摘要

目录

2017年辽宁工程技术大学工业工程(专业学位)828运筹学考研导师圈点必考题汇编(一) . 2 2017年辽宁工程技术大学工业工程(专业学位)828运筹学考研导师圈点必考题汇编(二) 19 2017年辽宁工程技术大学工业工程(专业学位)828运筹学考研导师圈点必考题汇编(三) 35 2017年辽宁工程技术大学工业工程(专业学位)828运筹学考研导师圈点必考题汇编(四) 54 2017年辽宁工程技术大学工业工程(专业学位)828运筹学考研导师圈点必考题汇编(五) 72

一、选择题

1. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。

A. 最大流

B. 最大割

C. 最小流

D. 最小割

【答案】D

【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。

2. 企业进行库存管理与控制的目标不包括以下( )。

A. 保证生产或销售的需要

B. 降低库存占用资金

C. 降低花在存储方面的管理费用

D. 较低的货损

【答案】D

【解析】货损与库存管理与控制无关,与采购的运输等其他环节有关。

3.

是某个目标约束条件所对应的目标函数,该目标函数就从逻辑上来看所表达的含义是( )。

A. 恰好完成目标值

B. 不超过目标值

C. 完成和超额完成目标值

D. 不能表示任何意义

【答案】D

【解析】目标规划的目标函数是按各自目标约束的正、负偏差变量和赋予相应的优先因子及权系数而构造的。 当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值。因此目标规划的目标函数只能是。 本题对应的目标函数是求maxZ ,所以没有任何意义。

4. 单纯形法求解最大化线性规划问题,如果存在“左端≥右端常数”的约束条件,对此约束条件应引入( )。

A. 可控变量

B. 环境变量

C. 人工变量

D. 松弛变量

【答案】D

【解析】约束方程为“≥”不等式,则可在“≥”不等式左端减去一个非负剩余变量(也可称松弛变量)。

二、填空题

5. 网络中如果树的节点个数为z ,则边的个数为_____。

【答案】z-l

【解析】由树的性质可知,树的边数=数的节点数-1

6. 若对偶问题为无界解,则原问题:_____。

【答案】无可行解

【解析】任一对偶问题的可行解都是原问题的上界,而原问题的任意可行解都是对偶问题的下界。若对偶问题为无界解,则原问题的目标函数

即没有可行解。

7. 流f 为可行流必须满足_____条件和_____条件。

【答案】容量限制条件和平衡条件

【解析】在运输网络的实际问题中可以看出,对于流有两个明显的要求:一是每个弧上的流量不能超过该弧 的最大通过能力(即弧的容量); 二是中间点的流量为零。因为对于每个点,运出这点的产品总量与运进这点的 产品总量之差,是这点的净输出量,简称为是这一点的流量; 由于中间点只起转运作用,所以中间点的流量必为 零。易而发点的净流出量和收点的净流入量必相等,也是这个方案的总输送量。

8. 若x 为某极大化线性规划问题的一个基可行解,

用非基变量表达其目标函数的形式为

则X 为该LP 最优解的条件是:_____。 【答案】

。 无界,即无限小,则z 无解,【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规划最优时要求非基变 量检验数小于等于0,所以

三、判断题

9. 整数规划问题最优解的目标函数值一定优于其相应线性规划问题最优解的目标函数值。( )

【答案】×

【解析】因为附加了整数条件,其可行域比其相应线性规划问题的可行域减小,故整数规划问题最优解的目 标函数值一定不优于其相应线性规划问题最优解的目标函数值。

10.用动态规划方法求最优解时,都是在行进方向规定后,均要顺着这个规定的行进方向,逐段找出最优途 径。( )

【答案】√

【解析】用递推法求解动态规划问题,首先将过程分成几个相互联系的阶段,选取状态变量和决策变量并定 义最优值函数,然后写出基本的递推关系式和基本方程。其行进方向的规定,即选择用逆推法还是顺推法。因 为动态规划的状态具有无后效性,所以必须按规定的行进方向逐段找出最优途径。

11.目标规划问题的日标函数都是求最大化问题的。( )

【答案】×

【解析】当每一目标值确定后,决策者的要求是尽可能缩小偏离目标值,因此目标规划的目标函数只能是最小化的。

12.网络图中任何一个结点都表示前一工序的结束和后一工序的开始。( )

【答案】×

【解析】网络图的起始点只表示一工序的开始,结束点只表示一工序的结束。

13.如果线性规划问题有最优解,则它对偶问题也一定有最优解。( )

【答案】√

【解析】由对偶定理知,原命题为真,且线性规划问题与它的对偶问题的最优值相等。

四、证明题

14.对于M/M/1/∞/∞模型,在先到先服务情况下,试证明:

顾客排队等待时间分布的概率密度是

,并根据该式求等待时间的期望值

为在统计平衡 下顾客的等待时间,则

由a n 的定义,得,于是有 。 ,【答案】令N ’为在统计平衡下一个顾客到达时刻看到系统中已有的顾客数(不包括此顾客)

由定理知,对任何一个输入为最简单流的单服务台或多服务台的等待制排队系统,

恒有

,所以,

到达者遇到系统中顾客数不少于1个顾客,是需要等待的充要条件,因此