2018年中央财经大学国际经济与贸易学院396经济类联考综合能力之工程数学—线性代数考研仿真模拟五套题
● 摘要
一、解答题
1.
已知三元二次型
(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值. 【答案】(Ⅰ)因为A 各行元素之和均为0,
即值
,
由征向量.
因为
是
的特征向量.
是
1的线性无关的特
,由此可知
是A 的特征
其矩阵A 各行元素之和均为0, 且满足
其中
可知-1是A 的特征值
,不正交,将其正交化有
再单位化,可得
那么令
则有
(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,
得
2. 已知A 是3阶矩阵,
(Ⅰ)证明
:(Ⅱ
)设
【答案】
(Ⅰ)由同特征值的特征向量,
故
又令即由
求
是3维非零列向量,若线性无关;
且
线性无关.
令
非零可知,是A 的个
线性无关,得齐次线性方程组
因为系数行列式为范德蒙行列式且其值不为0,
所以必有
线性无关;
(Ⅱ)因为
,
所以
即
故
3.
已知
二次型的秩为
2.
求实数a 的值;
求正交变换x=Qy使得f 化为标准型. 【答案】
⑴由
可得
,
则矩阵
解得B 矩阵的特征值为
:当
时,
解
得对应的特征向量为
当时,
解
得对应的特征向量为
对于
解得对应的特征向量为
:
将单位转化为
:
. 令X=Qy,
则
4.
已知
对角矩阵.
【答案】A 是实对称矩阵
,
可得a=2.
此时
是二重根,
故
于是
必有两个线性无关的特征向量,
于是
知
是矩阵
的二重特征值,求a 的值,并求正交矩阵Q
使
为
解(2E-A )x=0,
得特征向量将
正交化:
解(8E-A )x=0,
得特征向量先
再将单位化,得正交矩阵:
相关内容
相关标签