2017年东北师范大学教育学部680心理学综合之现代心理与教育统计学考研导师圈点必考题汇编
● 摘要
一、概念题
1. 总体
【答案】总体(population )又译“母体”,统计学术语,指一个统计问题中研宄对象的全体。由具有某种研宄特征的个体构成。从总体中抽取一部分个体,就构成总体的一个样本。如,研宄小学生的推理能力,记X 为每个小学生的推理能力,则X 的任一个可能取值是一个个体,X 的所有可能取值的集合则是一个总体。如果随机抽取n 个小学生,测量他们的推理能力为.Y .\这就是一个取自总体X 的样本。可根据包含个体的数目,可分为有限总体和无限总体。总体本身的大小是有限还是无限,取决于研宄问题的推理范围。心理学研宄中常为无限总体。在推断统计中被定义为一个随机变量,可运用概率论等数学工具进行统计推断。
2. 协方差分析
【答案】协方差分析指回归分析与方差分析相结合的一种统计分析方法。是将难以直接控制的变量作为协变量影响的条件下,更准确地分析与评价因素对因变量的影响。它与方差分析的不同之处在于:方差分析的各因素水平可以根据需要和实际情况人为地加以控制,而在协方差分析中,某些因素的水平是不能控制或难以控制的。如在考察不同教学方法对学生学习成绩有无显著性影响的过程中,如果只考虑教学方法对学生学习成绩的作用,而不考虑学生的智力水平和学习基础这两个不能精确控制的因素对学生学习成绩的影响,将会影响判断的准确性。协方差分析可以消除这种不可控因素的影响,提高分析的精度。教学方法是可以人为控制的因素,称为方差因素,而学生的智力和学习基础是不能精确控制的因素,称为协变量。协方差分析的基本方法是先对每一水平下的实验结果进行回归分析,求出扣除协变量以后的残值,再将各水平试验下对应的残值进行方差分析。协方差分析适合于完全随机化设计资料、随机化区组设计资料、拉丁方资料等。
3. 概率
,概率论术语指,随机事件发生可能性大小度量指标。①概率描【答案】概率(probability )
述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,
即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
4. 次数
【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。
5. 参数检验(parametric test)
【答案】参数检验是统计假设检验的一种。与“非参数检验”相对。适用于总体分布形式已知。且仅由少数几个参数便可确定的条件下。其检验方法常是基于正态性的假定,如t 检验、F 检验、正态线性回归、狭义多元分析等。其主要缺点在于,因其受到严格的关于正态性的条件限制,而大大制约了这类检验的应用或可信度的保证。
6. 随机变量
【答案】随机变量(random variable)是在样本空间的全部事件集上的一个实值函数。通常随机变量用大写字母x ,y , z 等表示,或者希腊字母,…等表示。分离散型随机变量和连续型随机变量两类。离散型随机变量是指所有可能的取值个数是有限的或至多可列的随机变量。如随机抽取任一学生观察其性别,其样本空间只有两个男性和女性样本点,
即
随机变量X 只取两个值:即当某学生
是男生时,x 取1; 当学生是女生时,x 取0。连续型随机变量是指可能在一个连续区间内或整个实数范围内取值的随机变量。如,在12岁的学生总体中,随机抽一个观测其身高y 。此随机试验的样本空间
机现象。
是大于0的实数集。随机变量y 可在一个连续区间内取值。随机变量的引进使概率论能使用精密的数学工具(如微积分、代数、实变函数、测度论等)来处理和分析随
二、简答题
7. 统计量与参数之间有何区别和关系?
【答案】在科学研究中,探寻的是关于所有事物总体的说明和解释。总体的那些特性称为参数(parameter ), 又称总体参数,是描述一个总体情况的统计指标;样本的那些特征值叫做统计量(statistics ), 又称特征值。
参数和统计量的区别
(1)一个参数是从整个总体中计算得到的量数,通常是通过样本特征值来预测得到,统计量是从一个样本中计算出来的一些量数,它可以描述一组数据的情况,参数代表总体的特性,它是一个常数;
(2)统计量代表样本的特性,它是一个变量,随着样本的变化而变化;
(3)参数和统计量之间最明显的区别是参数常用希腊字母表示,而样本统计量则用英文字母表示。
参数和统计量的关系
从数值计算上讲,当总体大小已知并与实验观察的总次数相同时,它们是同一统计指标。当总体无限时,统计量与总体参数不同,但统计量可在某种程度上作为总体参数的估计值。通过样本统计量,对总体参数能够做出预测和估计。
8. 最小二乘法中各点到拟合直线的距离为什么要取铅直距离而不取垂直距离?
【答案】这是有最小二乘法的推导过程所决定的。 设
们也可以
把这组数据看作是一个离散的函数。根据观察,如果这组数据图像“很像”一条直线(不是,我们的问题是确定一条直线直线)
是
程:
9. 说明下面符号代表的意义。
【答案
10.简述最小二乘法。
【答案】最小二乘法是建立精确的回归方程经常采用的方法,其基本过程如下: 设
若
图像“很象”
,我们的问题是确定一条直线一条直线(不是直线)使得它能“最好”地反映出这
组数据的变化。对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故“最好”应该是
确的回归方程:
最小,即这时误差的平方和最小,这时可以求得比较精是直角平面坐标系下给出的一组数据, 我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据】 由于是散点之间连线的最小距离,因此这个距离不是到拟合直线的垂直距离。 ,使得它能“最好”的反映出这组数据的变化。对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故“最好”应该
最小,即这时误差的平方和最小,这时可以求得比较精确的回归方是直角平面坐标系下给出的一组数据,若我
相关内容
相关标签