2018年华东理工大学药学院314数学(农)之工程数学—线性代数考研基础五套测试题
● 摘要
一、解答题
1. 证明n
阶矩阵
与相似.
【答案】
设 分别求两个矩阵的特征值和特征向量为,
故A 的n 个特征值为
且A 是实对称矩阵,则其一定可以对角化,且
所以B 的n
个特征值也为
=-B的秩显然为1,故矩阵B 对应n-1
重特征值
对于n-1
重特征值由于矩阵(0E-B )
的特征向量应该有n-1个线性无关,进一步
矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可
知n
阶矩阵
与相似.
2. 设线性方程
m
【答案】
对线性方程组的增广矩阵
试就
讨论方程组的解的悄况,备解时求出其解.
作初等行变换,如下
(1
)当
即
且
时
则方程组有惟一答:
(2)
当
且
即
且
时
则方程组有无穷多可得其一个特解
解.
此时原方程组与同解,
解得其基础解系为
为任意常数. 此时方程组无解. 时
的矩阵A ,满
足
且
故原方程组的通解为
(3
)当
(4
)当
3. 已知实二次
型
即
时
此时方程组无解.
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,B
的每一列
满足
的具体表达式.
知矩阵A
有特征值即
是属于A 的特征值
.
令
的线性无关特征向
显然B 的第1, 2列线性无关
,
量,从而知A
有二重特征值
设
对应的特征向量为
则
与—
j 正交,于是有
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ
)由于
则由正交变换
故
化二次型为标准形
故二次型 4.
设矩阵.
【答案】
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
相关内容
相关标签