当前位置:问答库>考研试题

2018年华东理工大学药学院314数学(农)之工程数学—线性代数考研基础五套测试题

  摘要

一、解答题

1. 证明n

阶矩阵

与相似.

【答案】

设 分别求两个矩阵的特征值和特征向量为,

故A 的n 个特征值为

且A 是实对称矩阵,则其一定可以对角化,且

所以B 的n

个特征值也为

=-B的秩显然为1,故矩阵B 对应n-1

重特征值

对于n-1

重特征值由于矩阵(0E-B )

的特征向量应该有n-1个线性无关,进一步

矩阵B 存在n 个线性无关的特征向量,即矩阵B 一定可以对角化,且从而可

知n

阶矩阵

与相似.

2. 设线性方程

m

【答案】

对线性方程组的增广矩阵

试就

讨论方程组的解的悄况,备解时求出其解.

作初等行变换,如下

(1

)当

则方程组有惟一答:

(2)

则方程组有无穷多可得其一个特解

解.

此时原方程组与同解,

解得其基础解系为

为任意常数. 此时方程组无解. 时

的矩阵A ,满

故原方程组的通解为

(3

)当

(4

)当

3. 已知实二次

此时方程组无解.

(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ

)求出二次型【答案】(Ⅰ)

由由

知,B

的每一列

满足

的具体表达式.

知矩阵A

有特征值即

是属于A 的特征值

.

的线性无关特征向

显然B 的第1, 2列线性无关

量,从而知A

有二重特征值

对应的特征向量为

与—

j 正交,于是有

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

(Ⅱ

)由于

则由正交变换

化二次型为标准形

故二次型 4.

设矩阵.

【答案】

求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角