2018年山西师范大学教师教育学院312心理学专业基础综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 统计量
【答案】统计量(statistic ),统计学术语,指不含未知参数的样本的函数。设有一总体X
,
是取自x 的一个随机样本,
数,则称
统计量,是一个统计量。如,样本均值是不包含任何未知参数的函是一个也是一个统计量。在各种不同的统计分析或推断中,
,若数学期望y 未知,可并不直接使用随机样本,而是将随机样本“加工”为统计量。在解决不同问题时有不同的统计量,统计量是直接用来进行分析或推断的重要工具。如正态总体
用样本均值X 去估计;在两个总体的均值差异显著性检验时,要运用Z 统计量或t 统计量。
2. 随机变量
【答案】随机变量(random variable)是在样本空间的全部事件集上的一个实值函数。通常随机变量用大写字母x ,y , z 等表示,或者希腊字母,…等表示。分离散型随机变量和连续型随机变量两类。离散型随机变量是指所有可能的取值个数是有限的或至多可列的随机变量。如随机抽取任一学生观察其性别,其样本空间只有两个男性和女性样本点,
即
随机变量X 只取两个值:即当某学生
是男生时,x 取1; 当学生是女生时,x 取0。连续型随机变量是指可能在一个连续区间内或整个实数范围内取值的随机变量。如,在12岁的学生总体中,随机抽一个观测其身高y 。此随机试验的样本空间
机现象。
3. 假设检验
【答案】在统计学中,通过样本统计量得出的差异作出一般性结论,判断总体参数之间是否存在差异,这种推论过程称假设检验。假设检验是推论统计中最重要的内容,它的基本任务就是事先对总体参数或总体分布形态做出一个假设,然后利用样本信息来判断原假设是否合理,从而决定是否接受原假设。检验的推理逻辑是一定概率保证下的反证法。一般包括四个步骤:(1)根
据问题要求提出原假设 (2)寻找检验统计量,用于提取样本中的用于推断的信息,要求在Ho 成立的条件下,统计量的分布已知且不包含任何未知参数;(3)由统计量的分布,计算“概率值”或确定拒绝域与接受域;(4)由具体样本值计算统计量的观测值,对统计假设作出判断。
第 2 页,共 36 页 是大于0的实数集。随机变量y 可在一个连续区间内取值。随机变量的引进使概率论能使用精密的数学工具(如微积分、代数、实变函数、测度论等)来处理和分析随
若Ho 的内容涉及到总体参数,称为参数假设检验,否则为非参数检验。
4. 频率
【答案】频率(frequency )①亦称“相对频数”。某随机事件A , 在N 次试验中出现的次数n 与试验总次数N 的比值。亦称事件A 发生的频率。记为其值介于0〜1之间。事件的频率越大,说明它出现的可能性越大;反之则越小。一个事件的频率不是一个固定的数值,与总次数N 有关,且即使再重复N 次试验,次数n 也可能不同。但在大量重复试验中频率具有稳定性,即当试验次数N 无限增大时,频率F 会在某个固定值上下波动,而且偏差越来越小。②简谐振动基本物理量。物体每秒振动的次数。单位是赫兹(Hz )。在数学关系上频率是物体振动周期的倒数。
二、简答题
5. 为什么要做区间估计?怎样对平均数作区间估计?
【答案】(1)做区间估计是因为
①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。
这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。
②区间估计在一定意义上弥补了点估计的不足之处。
区间估计是根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区间的概率有多大。区间估计在点估计的基础上,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。
(2)对平均数进行区间估计的步骤如下
①根据实得样本的数据,计算样本的平均数与标准差。 ②计算标准误
有两种情况:
a. 当总体方差
b. 当总体方差未知时,
用样本的无偏估计量即方差样本的有偏估计方差则
第 3 页,共 36 页 已知时,
计算,如果计算的是
③确定置信水平或显著性水平。
④根据样本平均数的抽样分布,确定查何种统计表。
确定a=0.05或0.01的横坐标值。一般当总体方差已知时,查正态表;当样本方差未知时,查t 值表(当
时,也可查正态表作近似计算)。确定⑤计算置信区间。
a. 如果查正态分布表,置信区间可写作:
b. 如果查t 值表,置信区间则:
⑥解释总体平均数的置信区间。
6. 简述最小二乘法。
【答案】最小二乘法是建立精确的回归方程经常采用的方法,其基本过程如下: 设
若
图像“很象”
一条直线(不是直线),我们的问题是确定一条直线使得它能“最好”地反映出这组数据的变化。对个别观察值来说,它可能是正的,也可能是负的。为了不使它们相加彼此抵消,故“最好”应该是
确的回归方程:
7.
检验法在计数数据的分析中有哪些应用? 【答案】检验因研究的问题不同,可以细分为多种类型,如配合度检验、独立性检验、 最小,即这时误差的平方和最小,这时可以求得比较精是直角平面坐标系下给出的一组数据, 我们也可以把这组数据看作是一个离散的函数。根据观察,如果这组数据与 同质性检验等等。
(1)配合度检验主要用来检验一个因素多项分类的实际观察数与某理论次数是否接近,这种检验方法有时也称为无差假说检验。当对连续数据的正态性进行检验时,这种检验又可称
(2)独立性检验是用来检验两个或两个以上因素各种分类之间是否有关联或是否具有独立性的问题。两个因素是指所要研究的两个不同事物。例如性别与对某个问题的态度是否有关系,这里性别是一个因素,分为男女两个类别,态度是另一个因素,可分为赞同、不置可否、反对等多种类别。各因素分类的多少视研究的内容及所
划分的分类标志而定。这种类型的/检验适用于探讨两个变量之间是否具有关联(非独立)或无关(独立),如果再加入另一个变量的影响,即探讨三个变量之间关系时,就必须使用多维列联表分析方法。
第 4 页,共 36 页 为正态吻合性检验。