2017年河北大学管理学院868运筹学考研导师圈点必考题汇编
● 摘要
一、简答题
1. 考虑一个(线性)目标规划在计算机上求解的问题。假设手头只有一个线性规划的求解软件,想要仅仅 借助该软件来实现对目标规划的求解,请问你的策略是什么(不超过200字)?
【答案】想要仅仅借助该软件来实现对目标规划的求解,则应按如下步骤进行。
先以第一级目标为目标函数,以原来的约束为约束,求解一个线性规划; 其次,将己经实现的第一个目标作 为一个附加约束,以第二级目标为目标函数,再求解一个线性规划。以此类推,逐
,即可求出目标规划的满意解。 次求解k 个线性规划(k 为优先级的个数)
2. 试简述求解整数规划模型的分枝定界法剪枝的几种情况。
【答案】(l )某枝已经达到其范围内的最优解;
(2)某枝域内没有可行解时,即是不可行域;
(3)某枝所得数据不优于当前最优解时。
3. 试写出求解最短径路的Dijkstra 算法的步骤。
【答案】Dijkstra 算法的步骤为:
(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。
(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]
(3)比较所有具有T 标号的点,把最小者改为P 标号,即: 当存在两个以上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。
4. 试说明C 一W 节约算法的基本思想,你认为还可用它解决哪些方面的问题? 举例加以说明。
【答案】(1)C 一W 节约算法的基本思想(以旅行商问题为例):优先考虑将节约值最大的弧
这样在满足访问若干城市各一次且仅一次的条件下, 插入到旅行线路中,最大限度地缩短了路程。
(2)举例。运用C 一W 节约算法:设n 个不同用户为n 个点,维修点为基点,n 个用户点中从点i 到点j 的 长度为工人骑摩托车的交通时间加上点i 与点j 维修时间总和的一半。优先考虑将节约值最大的长度加入工作线路中去进行迭代。
二、计算题
5. 试用乘子法求解非线性规划问题(取c=2):
【答案】设
定义拉格朗日函数 于是得到
解得,
6. 某公司从两个不同的仓库向三个客户提供某种产品,由于在计划期内供不应求,公司决定重
,各客户的需点保证某些 客户的需要,同时又使总运输费用最低,现已知各仓库的供应量(吨)
,相关数据如表所示。 求量(吨)及从各仓库到每一客户的单位运费(元/吨)
表公司供应客户需求量表
根据供求关系和公司经营的条件,公司确定了以下目标变量:
P 1表示客户几的需要;
P 2表示至少满足各客户75%的需要;
P 3表示使总运费最少;
P 4表示从仓库A 2至客户B 1,只能用船运货,最小运量为1000吨;
P 5表示从仓库A 2至客户B 3,从仓库戊至客户残之间的公路正在大修,运货量应尽量少; P 6表示平衡用于
B l 和B 2之间的供货满意水平。试建立该问题的目标规划模型。
-+【答案】设Xij 为仓库i 到用户j 的运输量(i=1,2;j=1,2,3); d i ,d i 为第i 个目标约束
条件中,未达到规定目标的负偏差变量和超过目标的正偏差变量。
由题意可建立如下的目标规划模型:
7. 线性规划问题
当t l =t2=0时,该问题的最优单纯型表如表所示。
表
(l )确定所有参数,并写出该线性规划问题; (2)当t 2=0时,分析使最优解不变的t 1的变化范围; (3)当t 1=0时,分析使最优基不变的t 2的变化范围。
【答案】(l )由最优单纯型表得出,x l 和x 3为基变量x B ,则对应初始单纯形表中为:
由最优单纯型表得到
由,得, 所以, 求得
,即 ,