2018年东南大学学习科学中心333教育综合[专业硕士]之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 相关系数
【答案】相关系数是两列变量间相关程度的指标。相关系数的取值在-1到+1之间,常用小数表示,其正负号表示方向。如果相关系数为正,则表示正相关,两列变量的变化方向相同。如果相关系数为负值,则表示负相关,两列变量的变化方向相反。相关系数取值的大小表示相关的强弱程度。如果相关系数的绝对值在1.00与0之间,则表示不同程度的相关。绝对值接近1.00端,一般为相关程度密切,接近0值端一般为关系不够密切。0相关表示两列变量无任何相关性。
2. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
3. 抽样分布
【答案】抽样分布又称取样分布指某种统计量的概率分布,它是根据样本的所有可能的样本观察值计算出来的某个统计量的观察值的分布。抽样分布指样本统计量的分布,它是统计推论的重要依据。在科学研宄中,一般是通过一个样本进行分析,只有知道了样本统计量的分布规律,才能依据样本对总体进行推论,也才能确定推论正确或错误的概率是多少。常用的样本分布有平均数及方差的分布。
4. 集中量数与差异量数
【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性
质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。
二、简答题
5. 线性回归的基本假设是什么?
【答案】(1)线性关系假设
X 与Y 在总体上具有线性关系,这是一条最基本的假设。回归分析必须建立在变量之间具有线性关系的假设成立上。如果X 与Y 的真正关系不是线性,而回归方程又是按线性关系建立的,这个回归方程就没有什么意义了。非线性的变量关系,需使用非线性模型。
(2)正态性假设
正态性的假设系指回归分析中的Y 服从正态分布。这样,与某一个
量Y 的一个子总体,所有这样的子总体都服从正态分布,其平均数记作各个子总体的方差都相等。因此经由回归方程式所分离的误差项e ,即由特定与实际值对应的Y 值构成变方差记作所预测得到的之间的差距,也应呈正态分布。误差项e 的平均数为0。所以,也有人指出线性回归中应满足变量X 没有测量误差这一严格假设,但在实际中很难满足,常常只是对X 的测量误差忽略不计。
(3)独立性假设
①指与某一个X 值对应的一组F 值和与另一个X 值对应的一组7值之间没有关系,彼此独立。
②指误差项独立,不同的X 所产生的误差之间应相互独立,无自相关
误差项也需与自变量X 相互独立。
(4)误差等分散性假设
特定X 水平的误差,除了应呈随机化的常态分配,其变异量也应相等,称为误差等分散性。不相等的误差变异量(即误差变异歧异性,),反应出不同水平的X 与Y 的关系不同,不应以单一的回归方程式去预测Y 。当研究资料具有极端值存在时,或非线性关系存
在时,误差变异歧异性的问题就容易出现。违反假设时,对于参数的估计检验力就会变得不足。
6. 在心理学研究中,以样本对总体判断的数理理论依据。
【答案】(1)在心理学研究中,以样本对总体判断必须以一定的统计理论为基础。推论统计的理论和原理包括抽样理论、估计理论和统计检验原理。
①抽样理论及其方法主要讨论在什么情况下可以从样本的特性推论出总体的特性。其中一个最重要的条件就是样本抽取的原则,只有抽样具有随机性,才能保证推论具有某种程度的准确性。
而
②估计理论主要是根据随机抽样的结果来估计总体分布的参数值,分为点估计和区间估计。
③统计检验主要是根据实际的抽样结果来推论有关总体特征的假设是否与具体的随机抽样所提供的信息相一致。
(2)当总体参数不清楚时,用一个特定值,一般就是样本统计量对总体参数进行估计。以样本对总体判断的数理理论依据是样本分布理论,即概率发生的机会。统计分析中一般认为,0.05或0.01属于小概率事件,小概率事件在一次抽样中是不可能出现的。
样本分布的规律:
①样本统计量为正态分布或接近正态分布的两种情况,凡符合这两种情况的分布,都可以根据正态分布的概率进行统计推论。
②总体分布非正态,但方差己知,这时当样本足够大时其样本平均数的分布 为渐进正态分布,接近正态分布的程度与样本n 及总体偏斜程度有关。
③依据随机取样原则,自正态分布的总体中抽取容量为n 的样本,当n 足够大时
样本方差及标准差的分布,渐趋正态分布。
(3)假设检验是通过样本统计量得出的差异做出一般性结论,判断总体参数之间是否存在差异。假设检验的原理是概率性质的反证法。为了检验虚无假设,首先假定虚无假设为真。在虚无假设为真的前提下,如果导致违反逻辑或违背人们常识和经验的不合理现象出现,则表明“虚无假设为真”的假定是不正确的,也就不能接受虚无假设。若没有导致不合理现象出现,那就认为“虚无假设为真”的假定是正确的,也就是说要接受虚无假设。假设检验中的“不合理现象”是指小概率事件在一次试验中发生了。小概率事件原理认为“小概率事件在一次试验中几乎是不可能发生的”。
7. 选择统计检验程序的方法时要考虑哪些条件,才能正确应用统计检验方法分析问题。
【答案】选择统计检验程序的方法时需考虑以下条件:
(1)看总体分布是否已知。如果已知,看是不是正态分布。如果已知样本分布为常态分布就可以选择参数检验法,如果总体分布未知就用非参数检验法。
(2)在参数检验中,如果总体分布为正态,总体方差已知,两样本独立或相关都可以采用Z 检验;如果总体方差未知,根据样本方差,采取不同的t 检验。如果总体分布非正态,总体方差已知,根据样本独立或相关采取
检验。
(3)根据题目考虑用单侧还是双侧检验。
(4)在非参数检验中,按照两个样本相关和不相关、精度与容量等,可以采用符号检验、秩和检验等方法。
8. 统计分组应注意哪些问题?
【答案】进行统计分组时需要注意下列问题
(1)分组要以被研究对象的本质特性为基础
检验;如果总体方差未知,
根据独立和相关采取不同的
相关内容
相关标签