2018年西南大学文化与社会发展学院312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. T 分数
T 分数指由正态分布上的标准分数转换而来的等距量表分数。T 分数以50为平均数,【答案】
以10为标准差。T 分数是Z 分数的变形,因为Z 分数有负值和小数,人们不习惯,所以采用这个公式处理。经过变换,所得的分数全是整数,50分为普通,50分以上越高越好,50分以下越低越差。T 分数的意义及其优点和标准分数相同,不同之处是消除了小数和分数。
2. 样本
【答案】样本(sample )亦称“子样”,统计学术语,指按一定规则从统计总体中抽取的若干个体的集合或对总体X 的n 次观测结果
独立样本。
3. 参数检验(parametric test)
【答案】参数检验是统计假设检验的一种。与“非参数检验”相对。适用于总体分布形式已知。且仅由少数几个参数便可确定的条件下。其检验方法常是基于正态性的假定,如t 检验、F 检验、正态线性回归、狭义多元分析等。其主要缺点在于,因其受到严格的关于正态性的条件限制,而大大制约了这类检验的应用或可信度的保证。
4. 抽样分布
【答案】抽样分布又称取样分布指某种统计量的概率分布,它是根据样本的所有可能的样本观察值计算出来的某个统计量的观察值的分布。抽样分布指样本统计量的分布,它是统计推论的重要依据。在科学研宄中,一般是通过一个样本进行分析,只有知道了样本统计量的分布规律,才能依据样本对总体进行推论,也才能确定推论正确或错误的概率是多少。常用的样本分布有平均数及方差的分布。
根据样本容量(通常以30为界线)的大小,可区分为大样本和小样本。根据两样本来自的两总体是相关还是独立,可分为相关样本和
二、简答题
5. T 检验、F 检验、卡方各自适用于什么情况?
【答案】(l )t 检验运用于总体分布已知的参数检验法中。需要满足总体正态分布,总体
方差未知的情况下的显著性、差异性检验。比较适合于小样本(
这时需要数据符合t
分布。当样本含量n 小时,若观察值x 符合正态分布,则用t 检验(因此时样本均数符合t 分布)。
常见的t 检验形式有:样本均数与总体均数比较的t 检验;配对设计的t 检验;成组设计两样本均数比较的t 检验。
两个小样本均数比较的t 检验有以下应用条件:
①两样本来自的总体均符合正态分布,
②两样本来自的总体方差齐。
因此在进行两小样本均数比较的t 检验之前,要用方差齐性检验来推断两样本代表的总体方差是否相等,方差齐性检验的方法使用F 检验,其原理是看较大样本方差与较小样本方差的商是否接近“1”。若接近“1”,则可认为两样本代表的总体方差齐。判断两样本来自的总体是否符合正态分布,可用正态性检验的方法。若两样本来自的总体方差不齐,也不符合正态分布,对符合对数正态分布的资料可用其几何均数进行t 检验,对其他资料可 用检验或秩和检验进行分析。
(2)F 检验常常用于方差的显著性检验中。要检验两组数据的离散程度是否有显著不同,需要对两组数据的方差进行差异检验。这时数据符合F 分布。在平均数差异检验时,如果不是相关样本,需要进行方差齐性检验。单因方差分析(F 检验)•常用来检验一个变异因素对试验结果的显著性。作为参数检验法的一种,单因方差分析通常需要假设数据为服从正态分布的随机样本和方差齐性。
方差分析的基本条件是:总体正态分布;变异的可加性;各处理内的方差一致。
(3)卡方运用于非参数检验。适用于样本是频数分布的情况。其数据是属于点计而来的离散变量;总体分布未知;不是对总体参数的检验,而是对总体分布的假设检验。计数资料的统计检验主要用卡方检验,可以用来同时检验一个因素两项或多项分类的实际观测数据,与某理论次数分布是否相一致的问题,或有无显著差异的问题;还可用于检验两个或两个以上因素各有多项分类之间,是否有关联或是否具有独立性的问题。
卡方检验用于计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,又是一种非参数检验的方法。
6. 简述使用积差相关系数的条件。
【答案】积差相关又较积矩相关,是求直线相关的基本方法。积差相关系数适合的情况如下:
(1)两列数据都是测量数据,而且两列变量各自总体的分布是正态的,即正态双变量。为了判断计算相关的两列变量其总体是否为正态分布,一般要根据已有的研究资料进行查询。如果没有资料查询,研究者应取较大样本分别对两变量作正态性检验。这里只要求保证双变量总体为正态分布,而对要计算相关系数的两样本的观测数据并不一定要求正态分布。
(2)两列变量之间的关系应是直线性的。如果是非直线性的双列变量,不能计算线性相关。判断两列变量之间的相关是否直线式,可以作相关散布图进行线性分析。相关散布图是以两列
变量中的一列变量为横坐标,以另一变量为纵坐标,画散点图。如果呈椭圆形则说明两列变量
是线性相关的,如果散点是弯月状(无论弯曲度大小或方向),说明两变量之间呈非线性关系。
(3)实际测验中,计算信度涉及的积差相关时,分半的两部分测验须满足在平均数、标准差、分布形态、测题间相关、内容、形式和题数都相似的假设条件。
另外,积差相关要求成对的数据,即若干个体中每个个体都有两种不同的观测值。任意两个个体之间的观测值不能求相关。每对数据与其他对数据相互独立。计算相关的成对数据的数目不少于30对,否则数据太而缺乏代表性。
7. 各种差异量数各有什么特点?
【答案】(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。当组距不确定,其他差异量数都无法计算时,可以计算四分位差。但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
通过比较,可以发现标准差、方差价值较大,它们的应用也比较广泛,因此,一般称标准差、方差为高效差异量。相比较而言,其他差异量数,如全距、平均差、百分位差和四分位差等缺点比较明显,应用也受到限制,故称他们为低效差异量数。
8. 试解释交互作用。
【答案】(1)下面是两个2×2的实验设计范式: