2017年中国民航大学产业经济学专业(统计学、国际经济学)之统计学考研复试核心题库
● 摘要
一、简答题
1. 简述描述离散程度的统计量和适用类型。
【答案】衡量数据离散程度的统计量主要有极差、平均差、方差和标准差,其中最常用的是方差和标准差。
(1)极差是指一组数据的最大值与最小值之差。用R 表示,其计算公式为:
极差是描述数据离散程度的最简单测度值,计算简单,易于理答,但它容易受极端值的影响。由于极差只是利用了一组数据两端的信息,不能反映出中间数据的分散状况,因而不能准确描述出数据的分散程度。
(2)平均差也称平均绝对离差,它是各变量值与其平均数离差绝对值的平均数。平均差以平均数为中心,反映了每个数据与平均数的平均差异程度,它能全面准确地反映一组数据的离散状况。平均差越大,说明数据的离散程度越大;反之说明数据的离散程度小。为了避免离差之和等于零而无法计算平均差这一问题,平均差在计算时对离差取了绝对值,以离差的绝对值来表示总离差,这就给计算带来了不便,因而在实际中应用较少。但平均差的实际意义比较清楚,容易理答。
(3)方差是各变量值与其平均数离差平方的平均数。它在数学处理上是通过平方的办法消去离差的正负号, 然后再进行平均,方差开方后即得到标准差,方差或标准差能较好地反映出数据的离散程度,是实际中应用最广泛的离散程度测度值。与方差不同的是,标准差是具有量纲的,它与变量值的计量单位相同,其实际意义要比方差清楚。因此,在对实际问题进行分析时更多地使用标准差。
2. 二项分布与超几何分布的适用场合有什么不同?它们的均值和方差有什么区别?
【答案】(1)从理论上讲,二项分布只适合于重复抽样(即从总体中抽出一个个体观察完后放回总体,然后再抽下一个个体)。但在实际抽样中,很少采用重复抽样。不过,当总体的元素数目况很大而样本量, 相对于AT 来说很小时,二项分布仍然适用。
但如果是采用不重复抽样,各次试验并不独立,成功的概率也互不相等,而且总体元素的数目很小或样本量 «相对于W 来说较大时,二项分布就不再适用,这时,样本中“成功”的次数则服从超几何概率分布。
(2)若X 服从二项分布若Y 服从超几何分布
第 2 页,共 45 页 则则
3. “假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。
【答案】同意。
假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。
假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。
假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。
4. 给出显著性检验中,P 值的含义,以及如何利用P 值决定是否拒绝原假设。
【答案】P 值就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P 值很小,说明这种情况发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设。P 值越小,我们拒绝原假设的 理由就越充分。
从研宄总体中抽取一个随机样本,计算检验统计量的值和概率P 值,即在假设为真的前提下,检验统计量大于或等于实际观测值的概率。如果
数取值;如果
即一般以为显著
,结果更倾向于接受假定的参数取值。
为非常显著,其含义是样本间的差异由抽样误差所致的概率
时小于0.05或0.01。但是,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。
样本间的差异比时更大,这种说法是错误的。
5. 简述均值、众数和中位数三者之间的关系及其在实际中的应用。
【答案】(1)众数、中位数和平均数的关系
从分布的角度看,众数始终是一组数据分布的最高峰值,中位数是处于一组数据中间位置上的值,而平均数 则是全部数据的算术平均。
对于具有单峰分布的大多数数据而言,众数、中位数和平均数之间具有以下关系:
①如果数据的分布是对称的,众数中位数和平均数必定相等,即 ②如果数据是左偏分布,说明数据存在极小值,必然拉动平均数向极小值一方靠,而众数和
第 3 页,共 45 页 说明是较强的判定结果,拒绝假定的参说明说明是较弱的判定结果,拒绝假定的参数取值;如果
中位数由于是位 置代表值,不受极值的影响,因此三者之间的关系表现为:
③如果数据是右偏分布,说明数据存在极大值,必然拉动平均数向极大值一方靠,
则
(2)众数、中位数和平均数在实际中的应用
①众数是一组数据分布的峰值,不受极端值的影响。其缺点是具有不唯一性,一组数据可能有一个众数,也可能有两个或多个众数,也可能没有众数。众数只有在数据量较多时才有意义,当数据量较少时,不宜使用众数。 众数主要适合作为分类数据的集中趋势测度值。
②中位数是一组数据中间位置上的代表值,不受数据极端值的影响。中位数主要适合作为顺序数据的集中趋势测度值。
③平均数是对数值型数据计算的,而且利用了全部数据信息,它是实际中应用最广泛的集中趋势测度值。当数据呈对称分布或接近对称分布时,3个代表值相等或接近相等,这时则应选择平均数作为集中趋势的代表值。 但平均数的主要缺点是易受数据极端值的影响,对于偏态分布的数据,平均数的代表性较差。因此,当数据为偏态分布,特别是当偏斜程度较大时,可以考虑选择众数或中位数。
6. 解释总体分布、样本分布和抽样分布的含义。
【答案】总体分布就是总体中所有个体关于某个变量(标志)的取值所形成的分布。假设X 为总体随机变量,那么总体分布就是指X 的分布。很显然,同一变量不同的总体或同一总体不同的变量,其分布是不同的。
样本分布就是样本中所有个体关于某个变量(标志)的取值所形成的分布。假设x 为总体随机变量X 在样本 中的体现,那么样本分布就是指x 的分布,或者说是关于《个观测值的分布。同样,同一变量不同的样本或同一 样本不同的变量,其分布是不同的。
一般意义上说,抽样分布就是样本统计量的概率分布,它由样本统计量的所有可能取值和与之对应的概率组 成。如果说样本分布是关于样本观测值的分布,那么抽样分布则是关于样本统计量的分布,而样本统计量是由样 本观测值计算而来的。具体地说,抽样分布就是从容量为W 的总体中抽取容量为n 的样本时,所有可能的样本 统计量所形成的分布。假设从容量为W 的有限总体中最多可以抽取m 个容量为n 的不同样本,那么把所有m 个样本统计值形成频率分布,就是抽样分布。可以说,抽样分布是研宄样本分布与总体分布之间的桥梁。
二、计算题
7. 盒子中有10个球,6个红球和4个黑球,无放回随机选出4个球。计算选出球中包含黑球数的期望和方差。
【答案】设X 为所取的4个球中包含黑球的个数,则
第 4 页,共 45 页