当前位置:问答库>考研试题

2017年安徽财经大学应用统计432统计学[专业硕士]之统计学考研导师圈点必考题汇编

  摘要

一、简答题

1. 在显著性检验过程中,经常遇到值这一概念,试回答以下问题:

(1)值能告诉我们什么信息?

(2)当相应的值较小时为什么要拒绝原假设?

(3)显著性水平与值有何区别?

【答案】如果原假设为真,所得到的样本结果会像实际观测结果那么极端或更极端的概率,称为值,也称为观察到的显著性水平。

(1)值是当原假设正确时,得到所观测的数据的概率。如果原假设是正确的话,值告诉我们这样的观测数据会有多么的不可能得到。相当不可能得到的数据,就是原假设不对的合理证据。

(2)值是反映实际观测到的数据与原假设明实际观测到的数据与之间不一致程度的一个概率值。值越小,说之间不一致的程度就越大,检验的结果也就越显著。

(3)是犯第I 类错误的上限控制值,它只能提供检验结论可靠性的一个大致范围,而对于一个特定的假设检验问题,却无法给出观测数据与原假设之间不一致程度的精确度量。也就是说,仅从显著性水平来比较,

如果选择的值相同,

所有检验结论的可靠性都一样。而值可以测量出样本观测数据与原假设中假设的值的偏离程度。

2. 简述季节指数的计算步骤。

【答案】以移动平均趋势剔除法为例,计算季节指数的基本步骤为:

,(1)计算移动平均值(如果是季度数据采用4项移动平均,月份数据则采用12项移动平均)

并将其结果进行“中心化”处理,也就是将移动平均的结果再进行一次2项的移动平均,即得出“中心化移动平均值”

(2)计算移动平均的比值,也称为季节比率,即将序列的各观察值除以相应的中心化移动平均值,然后再计算出各比值的季度(或月份)平均值。

(3)季节指数调整。由于各季节指数的平均数应等于1或100%,若根据第2步计算的季节比率的平均值不等于1时,则需要进行调整。具体方法是:将第(2)步计算的每个季节比率的平均值除以它们的总平均值。

3. 单因素方差分析的实质是什么?并说明单因素方差分析的步骤。

【答案】单因素方差分析的实质是研宄一个分类型自变量对一个数值型因变量的影响。 单因素方差分析的步骤为:

(1)按要求检验的个水平的均值是否相等,提出原假设和备择假设。

(2)构造检验统计量,计算各样本均值(3)计算样本统计量

(4)统计决策。比较统计量 的值。若拒绝原假设;反之,不能样本总均值误差平方和 拒绝原假设。

4. 重复抽样和不重复抽样相比,抽样均值抽样分布的标准差有什么不同?

【答案】样本均值的方差与抽样方法有关。在重复抽样条件下,样本均值的方差为总体方差的即

去修正重复抽样时样本均值在不重复抽样条件下,样本均值的方差则需要用修正系数

的方差,即

对于无限总体进行不重复抽样时,可以按重复抽样来处理,因为其修正系数

对于有限总体,

当N 很大而n 很小时,

其修正系数

来计算。

5. 在研究总体特征时,往往采用抽样调查,试给出采用抽样的理由。

【答案】

抽样调查(趋向于1; 也趋向于1,

这时样本均值的方差也可以按公式)是一种非全面调查,它是按照随机原则从总体中抽取一部分单位作为样本进行观察研宄,以抽样样本的指标去推算总体指标的一种调查。随机原则要求所有调查单位都有一定的概率被抽取。根据抽选样本的方法,抽样调查可以分为概率抽样和非概率抽样两类。概率抽样是按照概率论和数理统计的原理从调查研宄的总体中,根据随机原则来抽选样本,并从数量上对总体的某些特征作出估计推断,对推断出可能出现的误差可以从概率意义上加以控制。习惯上将概率抽样称为抽样调查。抽样调查同其他调查比较,具有 如下几个特点:第一,样本单位按随机原则抽取,排除了主观因素对选取样本单位的影响;第二,能够根据部分 调查的实际资料对调查对象的总体的数量特征进行推断,从而达到对调查总体的认识;第三,在抽样调查中会存 在抽样误差,但是这个误差可以事先计算并加以控制。因此,抽样调查既能节省人力、物力、财力,又可以提高资料的时效性,而且能取得比较正确的全面统计资料,具有许多优点。

6. “假设检验的基本思路是:概率性质的反证法,主要依据的是:小概率事件原理”。你同意这种说法吗?简要叙述你对假设检验的理解和检验步骤。

【答案】同意。

假设检验所遵循的推断依据是统计中的“小概率原理”:小概率事件在一次试验中几乎是不会发生的。例如,在10000件的产品中,如果只有1件是次品,那么可以得知,在一次试验中随机抽取1件次品的概率就为此概率是非常小的。或者是说,在一次随机抽样试验中,次品几乎是不会被抽到的。反过来,如果从这批产品中任意抽取1件,恰好是次品,我们就可以断定,该次品率应该不是很小的,否则我们就不会那么轻易的就能抽到次品。从而,我们就有足够的理由否认产品的次品率是很低的假设。

假设检验的基本步骤为:第一,对所考察总体的分布形式或总体的某些未知参数做出某些假设,称之为原假设。第二,根据检验对象构造合适的检验统计量,并通过数理统计分析确定在原假设成立的条件下该检验统计量的抽样分布。第三,在给定的显著性水平下,根据抽样分布得出原假设成立时的临界值,由临界值构造拒绝域和接受域。第四,由所抽取的样本资料计算样本统计量的取值,并将其与临界值进行比较,从而对所提出的原假设做出接受还是拒绝的统计判断。

假设检验就是利用样本中所蕴含的信息对事先假设的总体情况做出推断。假设检验不是毫无根据的,而是在一定的统计概率下支持这种判断。

7. 考虑总体参数的估计量,简述无偏估计量与最小方差无偏估计量的定义。

【答案】①无偏性(unbiasedness )是指估计量抽样分布的数学期望等于被估计的总体参数。设总体参数为所选择的估计量为如果则称为的无偏估计量。对于待估参数,不同的样本值就会得到不同的估计值。这样,要确定一个估计量的好坏,就不能仅仅依据某次抽样的结果来衡量,而必须由大量抽样的结果来 衡量。对此,一个自然而基本的衡量标准是要求估计量无系统偏差。尽管在一次抽样中得到的估计值不一定恰好 等于待估参数的真值,但在大量重复抽样时,所得到的估计值平均起来应与待估参数的真值相同,即希望估计量 的均值应等于未知参数的真值,这就是无偏性的要求。 ②最小方差无偏估计是在无偏估计类中使均方误差达到最小的估计量,即在均方误差

是的一个无偏估计量,都有

则称是的一致最小方差无偏估计。

8. 在投掷一枚均匀硬币进行打赌时,出现正面时投掷者赢5元,出现反面时输3元,记投掷者赢钱数为X 。试写出此问题的样本空间

【答案】记赢钱数为

则的函数定义为: 以及随机变量X 的定义和概率分布。 其中 为投掷后出现的两种结果,令最小意义下的最优估计,它是在应用中人们希望寻求的一种估计量。设若对于的任一方差存在的无偏估计量