当前位置:问答库>考研试题

2016年山东师范大学物理与电子科学学院量子力学之量子力学简明教程(同等学力加试)复试笔试最后押题五套卷

  摘要

一、简答题

1. 归一化波函数是否可以含有任意相因子【答案】可以。因为即用任意相因子归一化。

2. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

3. 什么样的状态是定态,其性质是什么?

【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变

4. 扼要说明:

(1)束缚定态的主要性质。

(2)单价原子自发能级跃迁过程的选择定则及其理论根据。

【答案】(1)能量有确定值。力学量(不显含f )的可能测值及概率不随时间改变。 (2)选择定则:

理论根据:电矩m 矩阵元

如果

对整个空间积分也等于1。

对整个空间积分等于1,则

去乘以波函数,既不影响体系的量子状态,也不影响波函数的

二、计算题

5. 对于一个限制在边长为L 的立方体中的自旋为1/2、质量为m 的粒子,计算基态与第二激发态的本征能量及相应的本征态波函数.

【答案】这是一个三维方势阱问题,例子波函数为

S 为自旋波函数. 可分离变量得

最终解得

代表例子自旋朝上和朝下两种状态.

由于粒子自旋此时并不会对粒子能量产生影响,故

粒子能量基态:对应波函数为:例子第一激发态能量:对应波函数有:

第二激发态能量:对应波函数有: