当前位置:问答库>考研试题

2018年辽宁大学生命科学院314数学(农)之工程数学—线性代数考研强化五套模拟题

  摘要

一、解答题

1.

设二次型

(1)证明二次型f

对应的矩阵为(2

)若

【答案】(1)由题意知,

正交且均为单位向量,证明f

在正交变换下的标准形为

故二次型/

对应的矩阵为(2)证明:

设则

而矩阵A

的秩

故f

在正交变换下的标准形为

2.

已知三元二次型

(Ⅰ)用正交变换把此二次型化为标准形,并写出所用正交变换; (Ⅱ)若A+kE:五正定,求k 的取值.

其矩阵A 各行元素之和均为0, 且满足

其中

,由于

所以

为矩阵对应特征值所以

为矩阵对应特征值

所以

的特征向量;

的特征向量; 也是矩阵的一个特征值;

【答案】(Ⅰ)因为A 各行元素之和均为0,

即值

由征向量.

因为

的特征向量.

,由此可知是A 的特征

可知-1是A 的特征值

,不正交,将其正交化有

是1的线性无关的特

再单位化,可得

那么令

则有

(Ⅱ)因为A 的特征值为-1, -1, 0, 所以A+kE的特征值为k-l , k-1,k , 由A+kE正定知其特征值都大于0,

3.

已知

.

【答案】

由题意知

4.

已知实二次

型的矩阵

A ,满

足且其

(Ⅰ)用正交变换xzPy

化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ)求出二次型【答案】(Ⅰ)由由

知,B

的每一列

满足

的具体表达式

.

知矩阵

A 有特征值即

是属于A 的特征值

.

与—

j

正交,于是有

的线性无关特征向

显然B 的第1,

2列线性无关

,从而知A

有二重特征值

对应的特征向量为

解得

正交化得:

再将正交向量组

单位化得正交单位向量组:

(Ⅱ)由于

则由正交变换

化二次型为标准形