当前位置:问答库>考研试题

2018年沈阳理工大学机械工程学院825运筹学二考研仿真模拟五套题

  摘要

一、选择题

1. 己知Y i 为线性规划的对偶问题的最优解,若Y i >0,说明( )。

A. 原问题的最优解x i =0

B. 在最优生产计划中第i 种资源己完全耗尽

C. 在最优生产计划中第i 种资源有剩余

D. 无法判断

【答案】B

【解析】当影子价格为0时,表示某种资源未得到充分利用; 而当资源的影子价格不为零时,表明该种资源在生产中己耗费完毕。

2. 若f 是G 的一个流,K 为G 的一个割,且f 的流量等于K 的容量,则K 一定是( )。

A. 最大流

B. 最大割

C. 最小流

D. 最小割

【答案】D

【解析】网络从发点到收点的各通路中,由容量决定其通过能力,最小割集则是这些路中的咽喉部分,或者叫瓶口, 其容量最小,它决定了整个网络的最大通过能力。

3. 关于对偶问题,下列叙述错误的有( )

A. 根据对偶问题的性质, 当原问题为无解时, 其对偶问题无可行解; 反之当对偶问题无可行解, 其原问题具有无界解。

B. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解。

C. 己知y 飞为线性规划的对偶问题的最优解,若y*j>0,说明在最优生产计划中第j 种资源己完全耗尽

D. 若某种资源的影子价格等于k ,在其他条件不变的情况下,当种资源增加5个单位时,相应的目标函 数只讲增大sk

【答案】A

【解析】当原问题(对偶问题)无可行解时,对偶问题(原问题)或具有无界解或无可行解。

4. 如果要使目标规划实际实现值不超过目标值,则相应的偏离变量应满足( )。

A.d 十>0;

B.d 十=0;

C.d 一=0;

D.d 十>0且d 一>0

【答案】B

【解析】实际实现值不超过目标值,即. ,根据,可知

二、填空题

5. 在用对偶单纯形法求解某线性规划问题时, 当进基变量x i 确定后,出基变量的选取原则是:_____。

【答案】

6. 现有m 个约束条件 ,若某模型要求在这m 个条件中取”个条件作为约束,用,1变量来实现 该问题的约束条件组为:_____。

【答案】

【解析】0一l 变量取1时取该约束条件,否则不取,又一共取S 个约束条件。则可得到约束条件组为:

7. 无向连通图G 是欧拉图的充要条件是_____。

【答案】G 中无奇点

8. 两阶段法中,若第一阶段目标函数最优值不为0,则原问题_____。

【答案】无可行解

【解析】第一阶段目标函数值不是0,则说明最优解的基变量中含有非零的人工变量,表明原先性规划问题五可行解。

三、简述证明题

9. 现有一个线性规划问题(P 1):

, 其对偶问题的最优解为Y*=(y1, y2, y3, …ym )

另有一线性规划(P 2):

【答案】问题(P 2)的对偶问题为:

问题(P 2)的对偶问题为:

T 其中,d=(d 1, d 2, ...d 3) 。 求证:

易见,问题(P 1)的对偶问题与问题(P 2)的对偶问题具有相同的约束条件,从而,问题(P 1)的对偶问 题的最优解

令问题(P 2)的对偶问题的最优解为一定是问题(P 2)的对偶问题的可行解。 ,则:

。 因为原问题与对偶问题的最优值相等,所以

四、计算应用题 10.在如图所示的网络中,每弧旁的数字是

(l )确定所有的截集;

(2)求最小截集的容量;

(3)证明指出的流是最大流。

【答案】(l )确定所有的截集与对应的容量,如表所示。