2018年中国地质大学(武汉)经济管理学院958统计学原理之统计学考研强化五套模拟题
● 摘要
一、简答题
1. 欲调查广州市初中学生的身高情况,随机抽取100名广州市初中学生,测量了身高。
(1)用此例说明这几个统计概念,总体(population ), 样本(sample ), 参数(pammeter ), 统计量(statistics )。
(2)请说明如何对这100例身高数据进行描述性统计分析。
【答案】(1)总体(population )是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成。 本例中的总体是广州市所有初中学生。
样本(sample )是从总体中抽取的一部分元素的集合,构成样本的元素的数目称为样本量(sample size)。 本例中的样本是随机抽取的100名广州市初中学生,其中样本量为100。
参数(parameter )是用来描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。本 例中广州市所有初中学生的平均身高即是一个参数。
统计量(statistic )是用来描述样本特征的概括性数字度量。它是根据样本数据计算出来的一个量,由于 抽样是随机的,因此统计量是样本的函数。随机抽取的100名广州市初中学生的平均身高即是一个统计量。
(2)所谓描述性统计分析,就是对一组数据的各种特征进行分析,以便于描述测量样本的各种特征及其所 代表的总体的特征。主要包括集中趋势的描述,可计算身高的均值,中位数和众数,也可采用箱线图直观的反映 数据的集中趋势以及是否存在异常值;离散程度的描述,可计算身高的方差,变异系数,四分位差或极差,也可 采用折线图或散点图等直观反映数据的离散程度;分布的偏态与峰度描述,可计算偏度和峰度值,或采用茎叶图 或直方图直观的反映分布是否与正态分布或单峰偏态分布逼近。
2. 回归分析结果的评价。
【答案】对回归分析结果的评价可以从以下四个方面入手:
(1)所估计的回归系数的符号是否与理论或事先预期相一致;
(2)如果理论上认为
归方程也应该如此;
(3)用判定系数来回答回归模型在多大程度上解释了因变量取值的差异;
(4)考察关于误差项的正态性假定是否成立。因为在对线性关系进行检验和对回归系数进
第 2 页,共 60 页 之间的关系不仅是正的,而且是统计上显著的,那么所建立的回
行?检验时,
都要求误差项服从正态分布,否则,所用的检验程序将是无效的。检验正态性的
简单方法是画出残差的直方图或正态概率图。
3. 说明计算统计量的步骤。
【答案】计算统计量的步骤:
(1)用观察值减去期望值
(2)将
(3)将平方结果之差平方; 除以
(4)将步骤(3)的结果加总,即得:
4. 举例说明什么是列联表的独立性检验。
【答案】变量分为定量变量和定性变量。对于定量变量我们用回归分析等方法机进行研宄。对于定性变量,如吸烟是否与患癌症有关、性别与是否喜欢数学有关、年龄和喜欢的电视节目类型是否有关等等,我们对其进行列联 表的独立性检验。列联表的独立性检验是对一个分类变量的检验,因其分析过程可以通过列联表的方式呈现,故又可称为列联分析。
独立性检验就是分析列联表中行变量和列变量是否相互独立。
例如:为了研究年龄和喜欢的节目类型是否有关系,某单位对闲暇时间进行了全面调查,根据不同年龄档和喜爱收看电视节目的类型进行了如下的统计分类:
按照假设检验的步骤
:
按照假设检验的步骤:
设定假设:
(行变量与列变量独立)
(行变量与列变量不独立) (其中是行变量,是列变量)
选取统计量:
(其中,
第i 行第j 列类别的期望频数;并且为列联表中第i 行第j 列类别的实际频数; 为列联表中
第 3 页,共 60 页
最后带入数字,进行判断。看是否有行向量与列向量独立。若拒绝原假设,即行向量与列向量不独立,即年龄和喜欢的节目类型有关系。反之,年龄和喜欢的节目类型无关。
5. 什么是方差分析?它与总体均值的检验或检验有什么不同?其优势是什么?
【答案】方差分析就是通过检验各总体的均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。总体均值的检验或Z 检验,一次只能研宄两个样本,如果要检验多个总体的均值是否相等,那么作这样的两两比较十分烦琐。而且,每次检验两个的做法共需进行
的检验,如果次不同每次检验犯第I 类错误的概率都是0.05, 作多次检验会使犯第I 类错误的概率相应增加,而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也増加了分析的可靠性。
6. 简述判定系数的含义和作用。
【答案】(1)判定系数的含义
回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
(2)判定系数的作用
判定系数测度了回归直线对观测数据的拟合程度。若所有观测点都落在直线上,残差平方
和
可见
x 完全无助于解释y 的变差,拟合是完全的;如果y 的变化与x 无关,此时
的取值范围是则
越接近于7,表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来解释y 值变差的部分就越多,回归直线的拟合程度就越好;反之越接近于0, 回归直线的拟合程度就越差。
7. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?
【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。
检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显
著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分
析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
第 4 页,共 60 页
相关内容
相关标签