当前位置:问答库>考研试题

2017年上海交通大学密西根学院829电磁学和量子力学之量子力学导论考研强化模拟题

  摘要

一、简答题

1. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据

对波函数的统计解释,描写体系量子状态的波函数是概率波,由于

粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。

2. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符

3. 简述波函数的统计解释。

【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。

4. 什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?

【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.

5. 现有三种能级【答案】

请分别指出他们对应的是哪些系统。

对应一维无限深势阱;

对应

其中,

定义电子的自旋算符,并验证它们

对应中心库仑势系统,例如氢原子;

一维谐振子.

6. 量子力学中的可观测量算符为什么应为厄米算符?

【答案】实验上可以观测的力学量的平均值必须为实数,而体系在任何量子态下平均值为实数的算符必为厄米算符,因此这要求可观测量算符应为厄米算符。

7. 以能量这个力学量为例,简要说明能量算符和能量之间的关系。 【答案】在量子力学中,能量

用算符表示,

当体系处于某个能量态

的作用是得到这一本征值,即

当体系处于一般态

的本征态

时,算符对

的作

时,算符对态

,即用是得到体系取不同能量本征值的几率幅(从而就得到了相应几率)

8. 扼要说明:

(1)束缚定态的主要性质。

(2)单价原子自发能级跃迁过程的选择定则及其理论根据。

【答案】(1)能量有确定值。力学量(不显含f )的可能测值及概率不随时间改变。 (2)选择定则:

理论根据:电矩m 矩阵元

9. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为

10.写出由两个自旋态矢构成的总自旋为0的态矢和自旋为1的态矢。 【答案】总自旋为0:总自旋为1:

测不准关系为

二、计算题

11.—体系未受微扰作用时只有三个能级:能量至二级修正。

【答案】至二级修正的能量公式为

其中

分别为一级和二级修正能量. n=1时,将m=2, 3代入II 式得

n=2时,将m=l, 3代入II 式可得

n=3时,将m=l, 2代入II 式可得

再分别由I 式、III 式、IV 式和V 式可得

现在受到微扰的作用,

微扰矩阵元为

和c 都是实数. 用微扰公式求

12.自旋为时,粒子处于(2)求出t >0时

固有磁矩为

的状态。

的可测值及相应的取值几率。

(其中为实常数)的粒子,处于均匀外磁场

中,设t=0

(1)求出t >0时的波函数; 【答案】(1)体系的哈密顿算符为在泡利表象中,哈密顿算符的本征解为:在t= 0时,粒子处于为了求出

的状态,即

在泡利表象中的具体形式,需要求解满足的本征方程:

解得:于是,有:

由于,哈密顿算符不显含时间,故/>0时刻的波函数为:

(2)因为

所以是守恒量,它的取值几率与平均值不随时间改变,换句话说,只要计

算t=0时的取值几率就知道了t >0时的取值几率。 由于

的取值几率为:

因此有:

13.自旋在

方向的粒子,磁矩为

置于沿z

方向的磁场中,写出其哈密顿量,并求其故有:

概率幅与时间的关系。 【答案】将上述自旋在

方向的粒子(譬如电子)置于沿z 方向的磁场B 中观察其概率幅的

变化。这时的哈密顿矩阵为: