2017年上海交通大学电子信息与电气工程学院829电磁学和量子力学之量子力学导论考研仿真模拟题
● 摘要
一、简答题
1. 波函数【答案】
与
2. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符
其中,
是否描述同一状态?
描写的相对概率分布完全相同,描写的是同一状态。
定义电子的自旋算符,并验证它们
3. 什么是隧道效应,并举例说明。
【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。
4. 将描写的体系量子状态波函数乘上一个常数后,所描写的体系量子状态是否改变? 【答案】不改变。根据
对波函数的统计解释,描写体系量子状态的波函数是概率波,由于
粒子必定要在空间中的某一点出现,所以粒子在空间各点出现的概率总和等于1,因而粒子在空间各点出现概率只决定于波函 数在空间各点的相对强度。
5. 什么样的状态是定态,其性质是什么?
【答案】定态是能量取确定值的状态,其性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变
6. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
7. 放射性指的是束缚在某些原子核中的更小粒子有一定的概率逃逸出来,你认为这与什么量子效应有关?
【答案】与量子隧穿效应有关。
问
是否
8. 写出在【答案】
表象中的泡利矩阵。
它的本征值
9. 假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数
已知:另一部分
很小,可以看作是加于
上的微扰. 写出在非简并
状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】
一级修正波函数为二级近似能量为
其中
10.什么是费米子? 什么是玻色子? 两者各自服从什么样的统计分布规律?
【答案】费米子是自旋为半奇数的粒子,玻色子是自旋为整数的粒子. 费米子遵守费米-狄拉克统计规律,玻色子遵从玻色-爱因斯坦统计规律.
二、计算题
11.二电子体系中,
总自旋【答案】(
写出(
)的归一化本征态(即自旋单态与三重态)。
)的归一化本征态记为
则自旋单态为:
自旋三重态为:
12.粒子在一维无限深势阱中运动. 设该体系受到(1)利用微扰理论求第n 能级的准至二级的近似表达式. (2)指出所得结果的适用条件. 【答案】(1) 一维无限深方势阱:体系的零级近似波函数和零级近似能量
求到二级,矩阵元一般形式
的微扰作用。
则第n 能级的二级近似能量
(2)结果适用的条件是:即
13.在自旋态【答案】
下,求在自旋态j
下:
所以有:
14.一粒子在一维无限深势阱【答案】由一维定态薛定谔方程有
又在边界处应该满足连续条件故
由归一化条件有故对应能量为
中运动,求粒子的能级和对应的波函数.
相关内容
相关标签