2016年华中科技大学自动化学院828运筹学考研内部复习题及答案
● 摘要
一、简答题
1. 用表上作业法解运输问题时,在什么情况下会出现退化解? 当出现退化解时如何处理?
【答案】当运输问题某部分产地的产量和,与某一部分销地的销量和相等时,在迭代过程中间有可能在某个格填入一个运量时需同时划去运输表的一行和一列,这时就出现了退化。
当出现退化时,为了使表上作业法的迭代工作能顺利进行下去,退化时应在同时划去的一行或一列中的某个 格中填入数字0,表示这个格中的变量是取值为0的基变量,使迭代过程中基变量个数恰好为(m+n-l)个。
2. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。
(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟定出一套求解的迭代步骤。
(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。
【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。
图
(2)修改后的迭代算法即神经网络(neural networks)算法。
①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为N ; i 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。
②将车辆调度的各种约束条件转化为约束能量函数为E 约。
,且r i (t )只能取0或1,令神经元i 的阈值为③神经网络计算:令时刻t 神经元i 的输出为r i (t )
Q i ,则输出能量
为
,其中,因此总的能量函数
为,则该网络相对处于稳定状态。由于如
果,且E 有界,系统必
趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。
④根据所形成的最满意线路来选择车辆调度方案。
(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。
相关内容
相关标签