2018年西北农林科技大学水土保持研究所314数学(农)之工程数学—线性代数考研核心题库
● 摘要
一、解答题
1. 设n 阶实对称矩阵A
满足
(Ⅰ)求二次型(Ⅱ
)证明[!
【答案】
(Ⅰ)设
由于
从而
的规范形;
是正定矩阵,
并求行列式
的值.
即或
贝
因为A 是
为矩阵A 的特征值,
对应的特征向量为
又因
故有
解得
且秩
实对称矩阵,所以必可对角化,
且秩于是
那么矩阵A 的特征值为:1(k 个),-1(n-k 个).
故二次型
(Ⅱ)因
为
2.
设矩阵.
【答案】
故
的规范形为
所以矩阵B 的特征值是
:
由于B 的特征值全大于0且B 是对称矩阵,因此B 是正定矩阵,
且
求A 的特征值,并讨论A 是否可对角化? 若A 可对角化,则写出其对角
专注考研专业课13年,提供海量考研优质文档!
于是A 的3个特征值为(Ⅰ)当
且
时,A 有3个不同特征值
,故4
可对角化,且可对角化为
(Ⅱ)当a=0
时
,
此时A 有二重特征值1,
仅对
应1个线性无关的特征向量,故此时A 不可对角化
.
(Ⅲ)当
时,
此时
A
有二重特征值
而
仅对应1个线性无关的特征向量
,故此时A 不可对角化
.
3. 设的所有矩阵.
【答案】(1)对系数矩阵A 进行初等行变换如下:
E 为三阶单位矩阵,求方程组Ax=0的一个基础解系;求满足AB=E
得到方程组Ax=0同解方程组得Ax=0的一个基础解系为
(2)显然B 矩阵是一个4×3矩阵,设对矩阵(AE )进行初等行变换如
下:
专注考研专业课13年,提供海量考研优质文档!
由方程组可得矩阵B 对应的三列分别为
即满足AB=£;
的所有矩阵为
其中为任意常数.
4.
已知
二次型的秩为
2.
求实数a 的值;
求正交变换x=Qy使得f 化为标准型. 【答案】
⑴由
可得
,
则矩阵
解得B 矩阵的特征值为
:当
时,
解
得对应的特征向量为
当时,
解
得对应的特征向量为
相关内容
相关标签