2017年西安交通大学理学院722量子力学考研导师圈点必考题汇编
● 摘要
一、简答题
1. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。 【答案】不同意。因为
2. 写出电子在外电磁场【答案】
3. 已知为一个算符么正算符?
【答案】满足关系式(a )的为厄密算符,满足关系式(b )的为幺正算符。
4. 非相对论量子力学的理论体系建立在一些基本假设的基础上,试举出二个以上这样的基本假设,并简述之。
【答案】(1)微观体系的状态被一个波函数完全描述,从这个波函数可以得出体系的所有性质。波函数一般应满足连续性、有限性和单值性三个条件。
(2)力学量用厄密算符表示。如果在经典力学中有相应的力学量,则在量子力学中表示这个力学量的算符,由经典表示式中将动量换为算符数。
(3)将体系的状态波函数
用算符的本征函数展开:
则在
盔中测量力学量得到结果为
(4)体系的状态波函数满足薛定谔方程
其中是体系的哈密顿算符。
的几率是
得到结果在
范围内的几率是
得出。表示力学量的算符组成完全系的本征函
为实函数,但
中的哈密顿量。
满足如下的两式
问何为厄密算符?何为
可以为复函数。
(5)在全同粒子所组成的体系中,两全同粒子相互调换不改变体系的状态(全同性原理)。 以上选三个作为答案。
5. 什么是塞曼效应?什么是斯达克效应?
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。
6. 分别说明什么样的状态是束缚态、简并态与负宇称态?
【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。
7. 描写全同粒子体系状态的波函数有何特点?
【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。
8. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。
【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。
9. 量子力学中的力学量算符有哪些性质? 为什么需要这些性质?
【答案】量子力学中力学量算符为厄米算符,因而具有所有厄米算符的性质.
量子力学中力学量算符为厄米算符是由力学量算符本征值必须为实数决定的,比如,力学量的平均值为实数,因而对求平均值的式子求共轭后,其值应该不变,而求平均值时算符求共轭后式子值不变即要求算符为厄米算符.
10.厄米算符的本征值与本征矢
分别具有什么性质?
【答案】本征值为实数,本征矢为正交、归一和完备的函数系。
二、计算题
11.(1)写出全同粒子体系的态所满足的交换对称性以及随时间演化的动力学方程; (2)考虑由2
个全同费米子(
表示出体系可能的状态。
【答案】(1)全同粒子系的波函数:时间演化的动力学方程:(2)用
对称性波函数;
反对称性波函数。其随
)组成的体系,
设可能的单粒子态为
试用
表示出体系可能的状态如下:
12.假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场B 沿z 轴正向,电子磁矩在均匀磁场中的势能:
表示;
(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:电子轨道运动,
此时T=0。
求t >0时,自旋的平均值。提示:
提示:忽略
这里
为电子的磁矩;
自旋用泡利矩阵
(2)假设t=0时,电子自旋指向x 轴正向,即
(3)求t >0时,电子自旋指向y 轴负向,即【答案】(1)忽略电子轨道运动,是玻尔磁子。所以哈密顿为:
的几率是多少?
其中,
薛定谔方程为:
(2)在
表象中求解,自旋波函数可表示为:
即:
式中,
满足
即
设t= 0时,电子的自旋指向x 轴正向,
对应波函数为
相关内容
相关标签