2018年四川大学公共管理学院312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
2. 四分差
【答案】四分差又称四分位差,是差异量数的一种。计算公式:
位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。
3. 检验的显著性水平
【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。
4. 无偏估计
【答案】无偏估计是评价估计量的好坏的一个指标。设参数的估计量为若满足,
则它表明对 估计量进行多次观测,其正负偏差趋于抵消,而平均取值正好是待估参数,则称
的无偏估计量。如样本均值 是总体均值的无偏估计量。 为参数二、简答题
5. 探索性因素分析与验证性因素分析有什么区别?
【答案】(1)探索性因素分析(简写为EFA )就是指传统的因素分析。这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。在典型的EFA 中,研究者通过共变关系的分解,找出最低限度的主要成分()或共同因子(),然后进一步探讨这些主成分或共同因子与
, )个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值
(
以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。
由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子数目与可解释变异量()两者间寻找平衡点。因为因素分析至多可以抽取出相等于观察变量总数的因子数目,这样,虽然可以解释全部百分之百的变异,但失去因素分析找寻因子结构的目的,但如果研究者企图以少数几个较明显的因子来代表所有的项目,势必然将损失部分可解释变异来作为代价。因而在EFA 中,研究者相当一部分工作是在决定因子数目与提高因子解释的变异(即
(2)验证性因素分析()。 简写为CFA )是在研究人员积极改善传统因素分析的限制,扩大其应用范围的基础上产生的。这类因素分析要求,研究者对于潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观察变量的组成模式,进行因素分析的目的是为了检验这一先期提出的因子结构的适合性。这种因素分析方法也可用于理论架构的检验,它在结构方程模型中占有相当重要的地位,有着重要的应用价值,也是近年来心理测量与测验发展中相当重视的内容。
6. 直条图适合哪种资料? 绘制直条图时应注意哪些问题?
【答案】条形图,又称直条图,主要用于表示离散型数据资料,即计数数据。它是以条形的长短表示各事物间数量的大小与数量之间的差异。条形图中一个轴是分类轴,表示类别;另一个轴是数量轴,表示大小多少,描述计量数据。这个轴上数据单位的大小取决于原始数据。
绘制条形图需要注意以下几点:
(1)尺度须从零点开始,要等距分点,一般不能断开。
(2)条宽与间隔的比例要适当,条形图是以条形的长短表明数量的多少。
(3)直条的排列顺序可按时间序列、数量多少以及相比较事物的固有序列。
(4)图形区域中条形的顶端和下端尽量少用数据标签。
(5)调节过长条形有两种方法,一种是调整尺度,另一种是采用折叠法、回转法来调整条形本身。
7. T 检验、F 检验、卡方各自适用于什么情况?
【答案】(l )t 检验运用于总体分布已知的参数检验法中。需要满足总体正态分布,总体
方差未知的情况下的显著性、差异性检验。比较适合于小样本(这时需要数据符合t
分布。当样本含量n 小时,若观察值x 符合正态分布,则用t 检验(因此时样本均数符合t 分布)。
常见的t 检验形式有:样本均数与总体均数比较的t 检验;配对设计的t 检验;成组设计两样本均数比较的t 检验。
两个小样本均数比较的t 检验有以下应用条件:
①两样本来自的总体均符合正态分布,
②两样本来自的总体方差齐。
因此在进行两小样本均数比较的t 检验之前,要用方差齐性检验来推断两样本代表的总体方差是否相等,方差齐性检验的方法使用F 检验,其原理是看较大样本方差与较小样本方差的商是否接近“1”。若接近“1”,则可认为两样本代表的总体方差齐。判断两样本来自的总体是否符合正态分布,可用正态性检验的方法。若两样本来自的总体方差不齐,也不符合正态分布,对符合对数正态分布的资料可用其几何均数进行t 检验,对其他资料可 用检验或秩和检验进行分析。
(2)F 检验常常用于方差的显著性检验中。要检验两组数据的离散程度是否有显著不同,需要对两组数据的方差进行差异检验。这时数据符合F 分布。在平均数差异检验时,如果不是相关样本,需要进行方差齐性检验。单因方差分析(F 检验)•常用来检验一个变异因素对试验结果的显著性。作为参数检验法的一种,单因方差分析通常需要假设数据为服从正态分布的随机样本和方差齐性。
方差分析的基本条件是:总体正态分布;变异的可加性;各处理内的方差一致。
(3)卡方运用于非参数检验。适用于样本是频数分布的情况。其数据是属于点计而来的离散变量;总体分布未知;不是对总体参数的检验,而是对总体分布的假设检验。计数资料的统计检验主要用卡方检验,可以用来同时检验一个因素两项或多项分类的实际观测数据,与某理论次数分布是否相一致的问题,或有无显著差异的问题;还可用于检验两个或两个以上因素各有多项分类之间,是否有关联或是否具有独立性的问题。
卡方检验用于计数资料的分析,对于数据资料本身的分布形态不作任何假设,所以从一定的意义上来讲,又是一种非参数检验的方法。
8. 如果两总体中的所有个体都进行了智力测验,这两个总体智商的平均数差异是否还需要统计检验?为什么?
【答案】如果两个中体中的所有个体都进行了智力测验,这两个总体的智商的平均数差异还是需要进行统计检验。
相关内容
相关标签