2018年浙江大学生物系统工程与食品科学学院830生物化学与分子生物学之现代分子生物学考研仿真模拟五套题
● 摘要
一、名词解释
1. MissenseMutation
【答案】错义突变。错义突变是指DNA 分子中碱基对的取代,使得mRNA 的某一密码子发生变化,由它所编码的氨基酸基变成另一种的氨基酸,使得多肽链中的氨基酸序列也相应的发生改变的突变。
2. 密码子偏爱性(codon preference)
【答案】密码子偏爱性是指不同种属的生物对简并密码具有不同的使用频率的现象。
3. 阻遏蛋白
【答案】阻遏蛋白是指一类在转录水平对基因表达产生负控作用的蛋白质,在一定条件下与DNA 结合,一般具有诱导和阻遏两种类型。
4. 单核哲酸多态性(single nucleotide polymorphism, SNP)
【答案】单核苷酸多态性是指在基因组水平上由单个核苷酸的变异所引起的DNA 序列多态性。它是人类可遗传的变异中最常见的一种,占所有已知多态性的90%以上。SNP 所表现的多态性只涉及单个碱基的变异,这种变异一般由单个碱基的转换或颠换引起。
5. 锌指结构(zine finger motif)
【答案】锌指结构是指许多转录因子共有的DNA 结合结构域,具有很强的保守性,具有此结构的蛋白借肽链的弯曲使两个Cys 和两个His 与一个锌离子,或四个Cys 与一个锌离子形成形似手指状的三级结构。
6. 单顺反子mRNA (monocistronic mRNA)和多顺反子mRNA (polycistronic mRNA)。
【答案】单顺反子mRNA 是指能翻译成一条肤链的信使核糖核酸(mRNA )来自单顺反子; 多顺反子mRNA 是指两个以上相关基因串在一起转录所得到的信使核糖核酸(mRNA ),多顺反子mRNA 一般可同步翻译产生功能相关的多个蛋白质或酶。
7. 感受态细胞(competent cell)
【答案】感受态细胞是指受体细胞经过一些特殊方法(如CaCL 等化学试剂)的处理后,细胞膜的通透性发生变化,成为能容许外源DNA 的载体分子通过的细胞。
8. polysome
【答案】多核糖体。多核糖体是指蛋白质合成过程中结合在同一条mRNA 上的多个核糖体,能同时合成若干条蛋白质多肽链。
9. 编码链(coding strand)
【答案】编码链是指DNA 双链中含编码蛋白质序列的那条链,与模板链互补,也称有义链(sensestrand )或正链。其序列与信使核糖核酸相同,只是信使核糖核酸中的U (尿嘧啶)组成与编码链中的T (胸腺嘧啶)组成相区别。
10. 【答案】即荧光原位杂交技术(fluorescence in situ hybridization ),是指一种利用非放射性的劳光信号对原位杂交样本进行检测的技术。它将荧光信号的高灵敏度、安全性,荧光信号的直观性和原位杂交的高准确性结合
起来,通过荧光标记的DNA 探针与待测样本的DNA 进行原位杂交,在荧光显微镜下对荧光信号进行辨别和计数,从而对染色体或基因异常的细胞、组织样本进行检测和诊断,为各种基因相关疾病的分型、预前和预后提供准确的依据。
11.蛋白质组(proteome )
【答案】蛋白质组是指一种生物或一个细胞、组织所表达的全套蛋ft 质(protein ), 即包括一种细胞乃至一种生 物所表达的全部蛋白质。
12.Nonsence mutation
【答案】无义突变。无义突变是指由于结构基因中某个碱基的替换,使得原来编码某一氨基酸的密码子突变为终 止密码子UAA 、UGA 、UAG 中的一种,致使肽链的合成提前终止,肽链缩短,产生无活性的多肽片段的突变。
二、简答题
13.什么是增强子?有哪些特点?试述它的作用机制。
【答案】(1)增强子是指能够提高转录起始效率的DNA 序列,它可位于转录起始点的5' 或3' 端,而且一般与所调控的粑基因的距离无关。
(2)作为基因表达的重要调控元件,增强子通常具有下列特点:
①增强效应十分明显:一般能使基因转录频率增加10〜200倍,有的可以增加上千倍; ②增强效应与其位置和取向无关:不论增强子以什么方向排列(5' →3' 或3' →5' ), 甚至与靶基因相距3000bp 或在靶基因下游,均表现出增强效应;
③大多为重复序列:一般长约50bp , 适合与某些蛋白因子结合,其内部常含有一个产生增强效应时所必需 的核心序列:(G )TGGA/TA/TA/T (G );
④其增强效应有严格的组织和细胞特异性:说明増强子只有与特定蛋白质(转录因子)相互作用才能发挥功能;
⑤没有基因专一性:可以在不同的基因组合上表现增强效应;
⑥有相位性:其作用和DNA 的构象有关:
⑦许多增强子受外部信号的调控:如金属硫蛋白基因启动区上游所带的增强子,就可以对环境中的锌、镉浓度做出反应。
(3)增强子可能存在3种作用机制:
①影响模板附近的DNA 双螺旋结构,导致DNA 双螺旋弯折或在反式作用因子的参与下,以蛋白质之间的相互作用为媒介形成增强子与启动子之间“成环”连接,活化基因转录。
②将模板固定在细胞核内特定位置,如连接在核基质上,有利于DNA 拓扑异构酶改变DNA 双螺旋结构的张力,促进RNA 聚合酶II 在DNA 链上的结合和滑动。
③增强子区可作为反式作用因子或RNA 聚合酶II 进入染色质结构的“入口”。
14.真核生物蛋白质的翻译后加工有哪些?
【答案】(1)信号肽的切除:蛋白质除游离于胞浆内发挥作用外,还有一部分要分泌到细胞外和定位于膜系统中起作用。每一需要运输的多肽都含有一段氨基酸序列,称为信号肽,引导多肽至不同的转运系统,到达目的地后,信号肽将被切除。
(2)二硫键的形成:在mRNA 分子中,没有胱氨酸的密码子,而不少蛋白质分子中含有胱氨酸二硫键,有的还有多个,且二硫键是蛋白质的功能基团,它是通过两个半胱氨酸的巯基氧化而成的,有的在切除肽段前就已经形成。
(3)蛋白质的折叠:肽链的折叠在肽链合成没有结束时就已经开始。核糖体可保护30〜40个氨基酸长的肽链,当肽链从核糖体中暴露后便开始折叠,使线形多肽呈现一定的空间结构。三级结构的形成几乎和肽链合成的终止同时完成。蛋白质的折叠是从N 端开始的。
(4)糖基化作用使多肽变成糖蛋白:糖蛋白中的糖苷键有两类,一类是肽链上天冬酰胺侧链上的N 原子与寡聚糖核之间构成N-糖苷键;另一类是肽链上丝氨酸、苏氨酸侧链上的氧原子与寡聚糖核之间构成的0-糖苷键。通常在糖蛋白上发现的寡聚糖核是五聚糖。寡聚糖核是通过长萜醇的磷酸酯被带到蛋白质上的。高尔基体能对糖蛋白进行进一步的修饰和调整。
(5)非末端氨基酸残基的修饰:丝氨酸、苏氨酸残基的磷酸化;赖氨酸、谷氨酸等的甲基化;谷氨酸和天冬氨酸的羧基化。
(6)末端修饰:真核生物多肽的N 末端都是甲硫氨酸,通常N 末端的第一个甲硫氨酸以及更多的N 末端氨基酸残基要被除去。真核生物多肽的N 末端残基还要进一步乙酰化,羧基端的再修饰也时有发生。
(7)前体修饰:有些蛋白质生物合成时是以前体蛋白或多蛋白形式出现的,经过蛋白酶的切割,成为较小的活性分子。
相关内容
相关标签