当前位置:问答库>考研试题

2017年安徽工程大学运筹学(同等学力加试)复试仿真模拟三套题

  摘要

一、简答题

1. 试写出标准指派问题的线性规划问题。

【答案】

A ij 表示工作人员i 做工作j 时的工作效益 则得线性规划模型为:

2. 试写出求解最短径路的Dijkstra 算法的步骤。

【答案】Dijkstra 算法的步骤为:

(l )给v s 以p 标号,P (v S )二0,其余各点均给T 标号,T (v i )=+∞。

(2)若v i 点为刚得到P 标号的点,考虑这样的点v i ,(v i ,vj )属于E ,且v i 为T 标号。对v j 的T 标号进行如下修改:T (v j )=min[T(v i ),p (v i )+lij ]

(3)比较所有具有T 标号的点,把最小者改为P 标号,即:

当存在两个以

上最小者时,可同时改为P 标号。若全部点均为P 标号时停止,否则用代V i 转回(2)。

二、计算题

3. 某工程的各工序的清单及直接费用增长率如表所示。

(l )画出双代号(箭线式)网络图,在图上计算各工序的时间参数; (2)标出关键路线,总工期是多少?

(3)若将工期限制为33天,应压缩哪几个工序的工时,各压缩几天? 为什么?

【答案】(l )画出双代号网络图,并在图上计算个工序的时间参数(前者为工序最早开始时间,后者为工序最迟 结束时间)如下:

(2)关键路线为

总工期为37天。

(3)要将工期限制为33天,则要缩短关键路线的长度。关键路线中B ,D ,F , G , H 中,B 的直接费用增长率最 小,首先缩短B 的工时1天,F 、D 的直接费用增长率次之,所以二者共缩短3天即可达到目标。于是优化方案 有两个:

①缩短B 工序1天,缩短F 工序3天;

②缩短B 工序3天,缩短F 工序2天,缩短D 工序l 天。

4. 某一警卫部门共有12支巡逻队,负责4个要害部门的警卫巡逻。对每个部位可以考虑派出2~4支巡逻 队,并且由于派出巡逻队的数目不同,各部位可能造成的损失会有差别,具体数字如表所示:

问该警卫部门应往各部位分别派多少巡逻队,总的预期损失为最小。要求明确表述出状态变量,决策变量,并写出状态转移方程和动态规划基本方程。

【答案】该问题可以看成是4阶段的决策问题,采用动态规划的逆序解法进行求解。 ①分阶段k=l,2,3,4

②状态变量S K ,表示可以派往第k 个部位的巡逻队数目; ③决策变量x k ,表示派到第k 个部位的巡逻队数目; ④状态转移方程:⑤阶段指标函数⑥递推方程:⑦边界条件:逆序求解。 当k=4时

如表所示。

表示第k 阶段的预期损失;

当k=3时,

如表所示。

当k=2时

如图所示。

当k=1时

如表所示。