当前位置:问答库>考研试题

2017年河北工程大学统计学Ⅰ复试实战预测五套卷

  摘要

一、简答题

1. 在假设检验中,犯两类错误之间存在什么样的数理关系?是否有什么办法使得两类错误同时减少?

【答案】第一类错误是指原假设为真,拒绝原假设,又称弃真错误,犯这类错误的概率记为第二类错误是指原假设为假,接受原假设,又称取伪错误,犯这类错误的概率记为

由于两类错误是矛盾的,在其他条件不变的情况下,减少犯弃真错误的可能性

犯取伪错误的可能性

一办法只有增大样本容量,这样既能保证满足取得较小的又能取得较小的值。

2. 说明回归模型的假设以及当这些假设不成立时的应对方法。

【答案】(1)多元回归模型的基本假定有: ①自变量

③对于自变

④误差项是一个服从正态分布的随机变量,且相互独立,即

(2)若模型中存在多重共线性时,解决的方法有:

第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。

第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。

若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性

,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。

若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。

3. 简述统计分组的原则。

【答案】采用组距分组时,需要遵循不重不漏的原则。不重是指一项数据只能分在其中的某

第 2 页,共 42 页 势必增大

也就是说,

的大小和显著性水平的大小成相反方向变化。解决的唯是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方

差都相同,且不序列相关,

的所有

值②误差项s 是一个期望值为0的随机变量,即

一组,不能在其他组 中重复出现;不漏是指组别能够穷尽。即在所分的全部组别中每项数据都能分在其中的某一组,不能遗漏。

为解决不重的问题,统计分组时习惯上规定“上组限不在内”。即当相邻两组的上下限重叠时,恰好等于某 一组上限的变量值不算在本组内,而计算在下一组内。而对于连续变量,可以采取相邻两组组限重叠的方法,根 据“上组限不在内”的规定解决不重的问题,也可以对一个组的上限值采用小数点的形式,小数点的位数根据所 要求的精度具体确定。

4. 在研宄方法上,参数估计与假设检验有什么相同点和不同点?

【答案】(1)参数估计和假设检验的相同点

①是根据样本信息推断总体参数;

②都以抽样分布为理论依据,建立在概率论基础之上的推断,推断结果都有风险;

③对同一问题的参数进行推断,使用同一样本、同一统计量、同一分布,因而二者可以相互转换。

(2)参数估计和假设检验的不同点

①参数估计是以样本资料估计总体参数的可能范围,假设检验是以样本资料检验对总体参数的先验假设是否成立;

②区间估计求得的是以样本估计值为中心的双侧置信区间,假设检验既有双侧检验,也有单侧检验;

③区间估计立足于大概率,通常以较大的把握程度(可信度)

成立。

5. 试述统计总体及其特征。

【答案】总体是包含所研宄的全部个体(数据)的集合,它通常由所研宄的一些个体组成,如由多个企业构成的 集合,多个居民户构成的集合,多个人构成的集合,等等。总体根据其所包含的单位数目是否可数可以分为有限总体和无限总体。有限总体是指总体的范围能够明确确定,而且元素的数目是有限可数的。通常情况下,统计上 的总体是一组观测数据,而不是一群人或一些物品的集合。

总体具有的特征包括:(1)同质性,即总体单位都必须具有某一共同的品质标志属性或数量标志数值,它是 构成总体的条件;(2)大量性,即构成总体的总体单位数目要足够多;(3)差异性,即总体单位必须具有一个或 若干个品质变异标志或数量变异标志。

6. 中心极限定理。

【答案】设随机变量

第 3 页,共 42 页 去估计总体参数的置信区间;假设检验立足于小概率,

通常是给定很小的显著性水平去检验对总体参数的先验假设是否相互独立(S 卩,对任意给定的相互独立)且服从同一分布,该分布存在有限的期望和方

也就是说,当n 趋于无穷大时, 的分布趋向于标准正态分布

二、计算题

7. 盒中放有12个兵兵球,其中9个是新的。第一次比赛时从中任取3个来使用,比赛后仍放回盒中。第二 次比赛时,再从盒中任取3个球,求:(1)第二次取出的球都是新球的概率;(2)已知第二次使用时,取到的是 三只新球,而第一次使用时取到的是一只新球的概率。

【答案】(1)令表示第一次任取3个球使用时,取出Z 个新球的事件

B 表示第二次任取的3个球都是新球的事件。则有:

根据全概率公式,计算第二次取出的球都是新球的概率为:

(2)根据条件概率公式,计算第二次取到三个新球时第一次取到一个新球的概率为:

8. —家管理咨询公司为不同的客户进行人力资源管理讲座。每次讲座的内容基本上是一样的,但讲座的听课者有时是高级管理者,有时是中级管理者,有时是低级管理者。该咨询公司认为,不同层次的管理者对讲座的满意度是不同的。对听完讲座后随机抽取的不同层次管理者的满意度评分,如表1所示(评分标准从1~10,10代表非常满意)。

表1不同层次管理者的满意度评分

第 4 页,共 42 页