当前位置:问答库>考研试题

2017年湘潭大学518统计学复试实战预测五套卷

  摘要

一、简答题

1. 解释总平方和、回归平方和、残差平方和的含义,并说明它们之间的关系。

【答案】(1)总平方和(S^T)是实际观测值

与其均值的离差平方和,即

(2)回归平方和(^狀)是各回归值

来解释的变差部分。

(3)残差平方和(SSE )是各实际观测值与回归值的离差平方和,即

称为误差平方和。

(4)三者之间的关系

2. 简述判定系数的含义和作用。

【答案】(1)判定系数的含义

回归平方和占总平方和的比例称为判定系数,记为其计算公式为:

(2)判定系数的作用

判定系数测度了回归直线对观测数据的拟合程度。若所有观测点都落在直线上,残差平方

可见

x 完全无助于解释y 的变差,拟合是完全的;如果y 的变化与x 无关,此时

的取值范围是则

越接近于7,表明回归平方和占总平方和的比例越大,回 它是除了的线性影响之外的其他因素对变差的作用,是不能由回归直线来解释的变差部分。其又与实际观测值的均值y 的离差平方和,即其反映了在y 的总变差中由于x 与y 之间的线性关系引起的y 的变化部分,它是可以由回归直线归直线与各观测点越接近,用x 的变化来解释y 值变差的部分就越多,回归直线的拟合程度就越好;反之越接近于0, 回归直线的拟合程度就越差。

3. 解释多重判定系数和调整的多重判定系数的含义和作用。

【答案】(1)多重判定系数是多元回归中的回归平方和占总平方和的比例,它是度量多元回归方程拟合程度的一个统计量,反映了在因变量y 的变差中被估计的回归方程所解释的比例,其计算公式为

(2)调整的多重判定系数考虑了样本量(n )和模型中自变量的个数(k )的影响,这就使得

的值永远小于

而且的值不会由于模型中自变量个数的增加而越来越接近1,

其计算公式为

4. 说明条形图和直方图的区别和联系。

【答案】(1)条形图与直方图的区别

①形图是用条形的长度表示各类别频数的多少,其宽度则是固定的;直方图是用面积表示各组频数的多少, 矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义。

②由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。 ③条形图主要用于展示分类数据,而直方图则主要用于展示数值型数据。

(2)联系

两者都是用矩形表示数据分布情况;当矩形的宽度相等时,都是用矩形的高度来表示数据的分布情况。

5. 说明回归模型的假设以及当这些假设不成立时的应对方法。

【答案】(1)多元回归模型的基本假定有: ①自变量

③对于自变

④误差项是一个服从正态分布的随机变量,且相互独立,即

(2)若模型中存在多重共线性时,解决的方法有:

第一,将一个或多个相关的自变量从模型中剔除,使保留的自变量尽可能不相关。

第二,如果要在模型中保留所有的自变量,那就应该:避免根据统计量对单个参数进行检验;对因变量Y 值的推断(估计或预测)限定在自变量样本值的范围内。

若模型中存在序列相关时,解决的方法有:如果误差项不是相互独立的,则说明回归模型存在序列相关性

,这时首先要查明序列相关产生的原因。如果是回归模型选用不当,则应改用适当的回归模型;如果是缺少重要的自变量,则应増加自变量;如果以上两种方法都不能消除序列相关性,则需采用迭代法、差分法等方法处理。

若模型中存在异方差性时,解决的方法有:当存在异方差性时,普通最小二乘估计不再具有最小方差线性估计的性质,而加权最小二乘估计则可以改进估计的性质。加权最小二乘估计对误差项方差小的项加一个大的权数,对误差项方差大的项加一个小的权数,因此加强了小方差性的地位,使离差平方和中各项的作用相同。

6. 概述相关分析与回归分析的联系与区别。

【答案】(1)相关分析和回归分析的联系

它们具有共同的研宄对象,都是对变量间相关关系的分析,二者可以相互补充。相关分析可

是非随机的、固定的,且相互之间互不相关(无多重共线性); 的方

差都相同,且不序列相关,

的所有

值②误差项s 是一个期望值为0的随机变量,即

以表明变量间相关关系的性质和程度,只有当变量间存在相当程度的相关关系时,进行回归分析去寻求变量间相关的具体数学形式才有实际的意义。同时,在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又要依赖于回归分析,而且在多个变量的相关分析中相关系数的确定也是建立在回归分析基础上的。

(2)相关分析和回归分析的区别

①从研究目的上看,相关分析是用一定的数量指标(相关系数)度量变量间相互联系的方向和程度;回归分析却是要寻求变量间联系的具体数学形式,是要根据自变量的固定值去估计和预测因变量的平均值。

②从对变量的处理看,相关分析对称地对待相互联系的变量,不考虑二者的因果关系,也就是不区分自变量和因变量,相关的变量不一定具有因果关系,均视为随机变量;回归分析是在变量因果关系分析的基础上研宄其中的自变量的变动对因变量的具体影响,必须明确划分自变量和因变量,所以回归分析中对变量的处理是不对称的,在回归分析中通常假定自变量在重复抽样中是取固定值的非随机变量,只有因变量是具有一定概率分布的随机变量。

二、计算题

7. 某厂销售收入X 与利润Y 的统计资料如表所示。

(1)问X 与Y 是否有明显的线性关系?简单说明理由。

(2)若X 与Y 有线性关系,试求出Y 关于X 的线性回归方程。

(3)若销售收入为480万元,利润总额平均值的预测值为多少?[中南财经政法大学2002研]

【答案】(1)由题中数据得:

相关系数为:

因为相关系数与1十分接近,因此可以认为

(2)建立线性回归方程有明显的线性关系。 利用最小二乘法解得: