当前位置:问答库>考研试题

2018年厦门大学电子工程系820量子力学考研核心题库

  摘要

一、简答题

1. 归一化波函数是否可以含有任意相因子【答案】可以。因为即用任意相因子

如果

对整个空间积分也等于1。

对整个空间积分等于1,则

去乘以波函数,既不影响体系的量子状态,也不影响波函数的

归一化。

2. 描写全同粒子体系状态的波函数有何特点?

【答案】描写全同粒子体系状态的波函数只能是对称的或者反对称的,它们的对称性不随时间变化。

3. 试设计一实验,从实验角度证明电子具有自旋,并对可能观察到的现象作进一步讨论。 【答案】让电子通过一个均匀磁场,则电子在磁场方向上有上下两取向,再让电磁通过一非均匀磁场,则电子分为两束。

4. 试比较粒子和波这两个概念在经典物理和量子力学中的含义。

【答案】对于粒子,共同点是颗粒性,即是具有一定质量、电荷等属性的客体;不同点是经典粒子遵循经典决定论,沿确定轨道运动,微观粒子不遵循经典决定论,无确定轨道运动。 对于波,共同点是遵循波动规律,具有相干迭加性;不同点是经典波是与某个客观存在的物理量的周期性变化在空间中的传播相联系的量子力学中的物质波不存在这样的物理量,它只是一种几率波。

5. 自旋可以在坐标表象中表示吗?

【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。

6. 什么是塞曼效应?什么是斯达克效应?

【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光谱发生分裂的现象。

7. 什么是隧道效应,并举例说明。

【答案】粒子的能量小于势垒高度时仍能贯穿势垒的现象称为隧道效应,如金属电子冷发射和衰变现象都是隧道效应产生的。

8. 写出电子自旋的二本征值和对应的本征态。 【答案】

9. 请用泡利矩阵满足角动量对易关系。 【答案】电子的自旋算符

其中,

定义电子的自旋算符,并验证它们

10.分别说明什么样的状态是束缚态、简并态与负宇称态?

【答案】当粒子的坐标趋向无穷远时,波函数趋向零,称之为粒子处于束缚态。若一个本征值对应一个以上的本征态,则称该本征值是简并的,所对应的本征态即为简并态,本征态的个数就是相应的简并度。将波函数中的坐标变量改变一个负号,若新波函数与原波函数相差一个负号,则称其为负宇称态。

二、计算题

11.平面转子的转动惯量为I ,设绕z 轴转动,受到态能量的一级近似。

【答案】受到微扰之前,系统波函数为对于所有激发态能级,其简并度为二.

设容易得到则

于是有方程

再由久期方程

解得:

的微扰作用,求体系激发定

对应能量为

对应零级近似波函数为

故体系激发态定态能量的一级近似为:

即能级简并消失了,每个激发态能级都分裂成了两个能级。

12.已知厄米算符. 满足且求: (1)在A 表象中算符

的矩阵表示。

(2)在B 表象中算符的本征值和本征函数。 (3)从A 表象到B 表象的么正变换矩阵S 。 【答案】(1)由于所以,

在A 表象中算符的矩阵是

:设在A 表象中算符

的矩阵是由于

所以:

则有:

所以:

则有:令

其中为任意实常数,得在A 表象中的矩阵表示式为:

(2)类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:

α和β不同时为零的条件是上述方程的系数行列式为零,即对

有:

有:

可得:

则有:

利用

得:

所以算符的本征值是

因为在A 表象中,算符的矩阵是对角矩阵,

由于是厄米算符,