2018年潍坊医学院心理学系312心理学专业基础综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 标准分数
【答案】标准分数指以标准差为单位的一种差异量数,又称Z 分数或基分数。它等于一数列中各原始分数与其平均数的差,再除以标准差所得的商,公式为:
数据的标准分数
,为原始数据的值,式中,Z 为某原始为该组数据的平均数,为该组数据的标准差。标准分数的平均数为0,标准差为1。标准分数是一种不受原始测量单位影响的数值,用来表示一个原始分数在团体中所处位置的相对位置量数。其作用除了能够表明原数据在其分布中的位置外,还能对未来不能直接比较的各种不同单位的数据进行比较。如比较各个学生的成绩在班级成绩中的位置或比较某个学生在两种或多种测验中所得分数的优劣。
2. 非参数检验
【答案】非参数检验指对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验。常见的非参数检验有符号检验、秩和检验、中数检验等。其优点:(1)不需要对被检验的总体作出关于正态性或其他特定分布的假定;(2)容易理解、容易操作、应用范围广。缺点是功效较低,因为它常会丢失数据中的信息。经常属于大样本检验。
3. 嵌套设计
【答案】嵌套设计又称阶层设计,是指下一层不同因素水平,只在其上一层因素某一水平下出现,而在另一水平下不出现的设计。例如,B 因素的一些水平只在A 因素的
B 因素的另一些水平,只在水平下出现,而水平下出现。出现在次一级层次因素上各水平数不同的原因是由实际研宄的问题决定的,根据因素分层的多少有不同的嵌套类型。如一级嵌套、二级嵌套、三级嵌套等。一般情况下,可有完全随机取样和重复测量等不同形式。
4. 分层随机抽样
【答案】分层随机抽样是抽样方式的一种。按照总体已有的某些特征,将总体分成几个不同的部分(层),再分别在每部分中随机抽样,这种抽样的方法称为分层随机抽样。总原则是:各层内的变异要小,层与层间的变异越大越好。分层抽样充分利用了总体己知的信息,其样本代表性及推论的精确性一般优于简单随机抽样。对于同一总体,n 相同时,分层抽样误差小于简单随机抽样误差。
二、简答题
5. 简述检验的假设。 【答案】检验的假设主要有:
检验中的分类必须相互排斥,以保证每一个观测值被(1)分类相互排斥,互不包容。
被划分到更多的类别中去的情况。
(2)观测值相互独立。各个被试的观测值之间彼此独立,这是最基本的一个假定。
(3)期望次数的大小。为了努力使分布成为X2值合理准确的近似估计,每一个单元格中的期望次数应该至少在5个以上。
6. 统计分组应注意哪些问题?
【答案】进行统计分组时需要注意下列问题
(1)分组要以被研究对象的本质特性为基础
面对大量原始数据进行分组时,有时需要先做初步的分类,分类或分组一定是要选择与被研究现象的本质有关的特性为依据,才能确保分类或分组的正确。在心理学与教育学研究方面,专业知识的了解和熟悉对分组的正确进行有重要作用。例如在学业成绩研究中按学科性质分类,在整理智力测验结果时,按言语智力、操作智力和总的智力分数分类等。
(2)分类标志要明确,要能包括所有的数据
对数据进行分组时,所依据的特性称为分组或分类的标志。整理数据时,分组标志要明确并且在整理数据的过程中前后一致。这就是说,关于被研究现象本质特性的概念要明确,不能既是这个又是那个。另外,所依据的标志必须能将全部数据包括进去,不能有遗漏,也不能中途改变。
7. 独立样本和相关样本之间的差别是什么?
【答案】相关样本是指两个样本的数据之间存在一一对应的关系。而独立样本是指两个样本数据相互独立,不存在一一对应关系。
在显著性检验中,相关样本的t 检验一般不需要事先进行方差齐性检验。因为相关样本是成对数据,即两组数据存在对应关系,这样可以求出对应数据的差,使对两组数据均值差的显著性检验转化为对d 的显著性检验。而独立样本的数据不是成对的,即使两组数据的样本数相同,两组数据也不存在一一对应关系,因而不可能有对应值的差d ,只能以两个样本方差共同对总体方差进行估计(即求联合方差),必须以两组数据的方差相等为前提。
统计分析中,在考虑是参数还是非参数检验后,需要考虑是独立样本还是相关样本。这样涉及选择不同的检验方法。
8. 简述卡方配合度检验和卡方独立性检验的区别。
【答案】卡方配合度检验主要用于检验单个名义型变量多个分类上的实计数和某个理论次
划分到一个类别或另一个类别之中。此外,分类必须互不包容。保证不会出现某一观测值同时
数分布(如均匀分布)之间的差异显著性,因此可以将之理解成多组之间次数比较的方法;卡方独立性检验主要用于检验两个名义型变量各项分类上的次数之间是否存在显著关联,是考察名义型变量间相关性的方法。
三、计算题
9. 下面是6岁与10岁两个年龄组错觉实验的结果,问这两组的错觉是否有显著差异。(请用两种方法)
【答案】题目中未明确指出两个样本之间有相关,因此认为两样本是独立样本。问题为是否有差异则用双侧检验。
(1)可以用秩和检验 ①提出假设两组的错觉没有显著差异。
两组的错觉有显著差异。
②选择检验的统计量并计算其值
a. 将两组数据排等级 等级
6岁
10岁
b. 计算秩和
③确定显著性水平及临界值 当
因为⑤报告结果
根据假设检验的结果,两组的错觉有显著差异,
(2)用中数检验。 ①提出假设即两组的错觉没有显著差异。
即两组的错觉有显著差异。
②选择检验的统计量并计算其值
a. 将两组数据排等级 等级
6岁
时,查秩和检验表所以拒绝时, ④做出统计决断 即两组的错觉有显著差异。 (双侧检验)。
相关内容
相关标签