2018年天津职业技术师范大学职业教育学院312心理学专业基础综合之现代心理与教育统计学考研强化五套模拟题
● 摘要
一、概念题
1. 集中量数与差异量数
【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。
2. 差异系数
【答案】差异系数(),又称变异系数、相对标准差等,它是一种相对差异量,用CV 来表示,为标准差与平均数的百分比。在对不同样本的观测结果的离散程度进行比较时,常常遇到下述情况:两个或多个样本所测的特质不同。如何比较其离散程度?即使使用的是同一种观测工具,但样本的水平相差较大时,如何比较它们的离散程度?这时需要运用相对差异量进行比较。差异系数的计算公式是:(S 为某样本的标准差,M 为该样本的平均数)。差异系数在心理与教育研宄中常常应用于同一对象的不同领域或同一领域的不同对象。
3. 嵌套设计
【答案】嵌套设计又称阶层设计,是指下一层不同因素水平,只在其上一层因素某一水平下出现,而在另一水平下不出现的设计。例如,B 因素的一些水平只在A 因素的
B 因素的另一些水平,只在水平下出现,而水平下出现。出现在次一级层次因素上各水平数不同的原因是由实际研宄的问题决定的,根据因素分层的多少有不同的嵌套类型。如一级嵌套、二级嵌套、三级嵌套等。一般情况下,可有完全随机取样和重复测量等不同形式。
4. 四分差
【答案】四分差又称四分位差,是差异量数的一种。计算公式:
位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。
二、简答题
5. 根据不同条件下,不同统计量的假设检验方法,试概括出假设检验的基本过程。
【答案】假设检验的基本过程有:
(1)提出虚无假设和备择假设;
(2)选择检验的统计量并计算其值;
(3)确定显著性水平及临界值;
(4)作出统计决断;
(5)报告结果。
6. 算术平均数和几何平均数分别适用于什么情形?
【答案】(1)算术平均数
①算术平均数的概念算术平均数是所有观察值的总和除以总频数所得之商,简称为平均数或均数。
②算数平均数的优点
A. 一般优点第一,反应灵敏;第二,严密确定,简明易懂,计算方便;第三,适合代数运算;第四,受抽样变动的影响较小。
B. 特殊优点第一,只知一组观察值的总和及总频数就可以求出算术平均数;第二,用加权法可以求出几个平均数的总平均数;第三,用样本数据推断总体集中量时,算术平均数最接近于总体集中量的真值,它是总体平均数的最好估计值;第四,在计算方差、标准差、相关系数以及进行统计推断时,都要用到它。
③缺点
A. 易受两极端数值(极大或极小)的影响;
B. 一组数据中某个数值的大小不够确切时就无法计算其算术平均数;
④适用情况第一,数据必须是同质的,即同一种测量工具所测量的某一特质;第二,数据取值必须明确;第三,数据离散不能太大。从而可以看出,平时各科成绩相加求总分,并按此排序是有问题的,不满足求平均数的要求。
(2)几何平均数①几何平均数的概念几何平均数是指一种由n 个正数之乘积的n 次根表示的平均数。在计算学校经费的增加率、平均率,学生入学率,毕业生的增加率的计算时常用。②应用第一,求学习、记忆的平均进步率;第二,求学校经费平均増加率,学生平均入学率、平均增加率,平均人口出生率。
7. 某厂要进行压力的性别差异的研究,但由于工厂不大就把男女员工的数据都收集来了,那么应该用什么方法看性别间有否差异呢?
【答案】可以用独立样本t 检验进行性别间差异检验。
首先可以从样本的抽样方面考虑这个工厂在数据采集上的科学性。
抽样调查也会遇到调查的误差和偏误问题。通常抽样调查的误差有两种:一种是工作误差(也称登记误差或调查误差),一种是代表性误差(也称抽样误差)。另外,由于调查单位少,代表性强,所需调查人员少,工作误差比全面调查要小。特别是在总体包括的调查单位较多的情况下,抽样调查结果的准确性一般高于全面调查。因此,抽样调查的结果是非常可靠的。但是抽样调查得遵循一定的原则:
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。而且抽样过程中样本要能代表总体,不能随便挑选。
因此,这个工厂在进行性别差异的研究中,没有考虑抽样的科学性原则。这样得出的结果只能代表这个工厂的情况,而缺乏推论价值。
8. 为什么要做区间估计?怎样对平均数作区间估计?
【答案】(1)做区间估计是因为
①当用点估计来对总体参数进行估计时,总是以误差的存在为前提,但又不能提供正确估计的概率。
这是由于点估计是用估计量的一个具体的数值作为待估参数的估计值,由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来做估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义。
②区间估计在一定意义上弥补了点估计的不足之处。
区间估计是根据估计量以一定可靠程度推断总体参数所在的区间范围,它是用数轴上的一段距离表示未知参数可能落入的范围,它虽不具体指出总体参数等于什么,但能指出未知总体参数落入某一区间的概率有多大。区间估计在点估计的基础上,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。
(2)对平均数进行区间估计的步骤如下
①根据实得样本的数据,计算样本的平均数与标准差。 ②计算标准误
有两种情况:
a. 当总体方差
b. 当总体方差未知时,
用样本的无偏估计量即方差样本的有偏估计方差则
已知时,
计算,如果计算的是
相关内容
相关标签