2017年首都经济贸易大学城市经济与公共管理学院702统计学考研冲刺密押题
● 摘要
一、简答题
1. 简述相关系数和函数关系的差别。
【答案】变量之间的关系可分为两种类型:函数关系和相关关系。
(1)函数关系 设有两个变量
和(2)相关关系
相关关系是指变量之间确实存在的但关系值不固定的相互依存关系。在这种关系中,当一个(或几个)变量的值确定以后,另一个变量的值虽与它(或它们)有关,但却不能完全确定。这是一种非确定的关系。
2. 简述时间序列的构成要素。
【答案】时间序列的构成要素分为4种,即趋势、季节性或季节变动、周期性或循环波动、随机性或不规则波动。
(1)趋势是时间序列在长时期内呈现出来的某种持续向上或持续下降的变动,也称长期趋势;
(2)季节性也称季节变动,它是时间序列在一年内重复出现的周期性波动;
(3)周期性也称循环波动,它是时间序列中呈现出来的围绕长期趋势的一种波浪形或振荡式变动;
(4)随机性也称不规则波动,是指偶然性因素对时间序列产生影响,致使时间序列呈现出某种随机波动。
3. 要检验多个总体均值是否相等时,为什么不作两两比较,而用方差分析方法?
【答案】方差分析不仅可以提高检验的效率,同时由于它是将所有的样本信息结合在一起,也增加了分析的可靠性。
检验多个总体均值是否相等时,如果作两两比较,则需要进行多次的检验。随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会増加(并非均值真的存在差别)。而方差分析方法则是同时考虑所有的样本,因此排除了错误累积的概率,从而避免拒绝一个真实的原假设。
变量随变量一起变化,并完全依赖于当变量取某个数值时,依确定的关系取相应的值,则称是的函数。由此可见函数关系是一种一一对应的确定性关系。
4. 简述非抽样误差类型。
【答案】非抽样误差是相对抽样误差而言的,是指除抽样误差之外的,由于其他原因引起的样本观察结果与总体 真值之间的差异。无论是概率抽样、非概率抽样,或是在全面调查中,都有可能产生非抽样误差。非抽样误差有以下几种类型:
(1)抽样框误差,是指抽样框中的单位与研宄总体的单位不存在一一对应的关系,使用这样的抽样框抽取样本就会出现一些错误。
(2)回答误差,是指被调查者在接受调查时给出的回答与真实情况不符。导致回答误差的原因有多种,主要有理答误差、记忆误差和有意识误差。
(3)无回答误差,是指被调查者拒绝接受调查,调查人员得到的是一份空白的答卷。
(4)调查员误差,是指由于调查员的原因而产生的调查误差。
(5)测量误差,是指如果调查与测量工具有关,则很可能产生测量误差。
5. 构建综合评价指数时需要考虑哪些方面的问题?
【答案】构建综合评价指数需要考虑如下几个方面的问题:
(1)进行理论研宄,其中包括统计指标理论以及统计指标体系的理论研宄,以便为确定所需的评价指标提供一定的理论依据。
(2)建立科学的评价指标体系。所建立的指标体系是否科学与合理,直接关系到评价结果的科学性和准确性。建立指标体系,首先应进行必要的定性研宄,对所研宄的问题进行深入的分析,尽量选择那些具有一定综合意义的代表性指标;其次,应尽可能运用多元统计的方法进行指标的筛选,以提高指标的客观性。
(3)评价方法研宄,主要包括综合评价指数的构造方法、指标的赋权方法以及各种评价方法的比较等。
6. 给出在一元线性回归中:
(1)相关系数的定义和直观意义;
(2)判定系数的定义和直观意义;
(3)相关系数和判定系数的关系。
【答案】(1)相关系数是根据样本数据计算的度量两个变量之间线性关系强度的统计量。若相关系数是根据总体全部数据计算的,称为总体相关系数,记为
称为样本相关系数,记为r 。样本
相关系数的计算公式为:
按上述计算公式计算的相关系数也称为线性相关系数,或称为相关系数。r 仅仅是x 若是根据样本数据计算的,则与y 之间线性关系的一个度量,它不能用于描述非线性关系。这意味着,r=0只表示两个变量之
间不存在线性相关关系,并不说明变量之间没有任何关系,它们之间可能存在非线性相关关系。变量之间的非线性相关程度较大时,就可能会导致r=0。因此,当r=0或很小时,不能轻易得出两个变量之间不存在相关关系的结论,而应结合散点图做出合理的答释。
(2)回归平方和占总平方和的比例称为判定系数,记为其计算公式为:
判定系数测度了回归直线对观测数据的拟合程度。
的取值范围是越接近于1, 表明回归平方和占总平方和的比例越大,回归直线与各观测点越接近,用x 的变化来答释y 值变
差的部分就越多,回归直线的拟合程度就越好;反之,越接近于0, 回归直线的拟合程度就越差。
(3)相关系数和判定系数都是用来表明X 与Y 的关系,即X 对Y 的拟合程度。在一元线性回归中,相关系数实际上是判定系数的平方根。相关系数取值范围在卜之间。判定系数取值范围在[0, 1]之间。
7. 什么是集中趋势和离散趋势?它们常用的指标有哪些?
【答案】集中趋势是指一组数据向某一中心值靠拢的程度,它反映了一组数据中心点的位置所在。常用的反映集中趋势的指标有平均数、中位数和众数。
数据的离散趋势是数据分布的另一个重要特征,它反映的是各变量值远离其中心值的程度。数据的离散程度越大,集中趋势的测度值对该组数据的代表性就越差;离散程度越小,其代表性就越好。描述数据离散程度采用 的测度值,根据所依据数据类型的不同主要有异众比率、四分位差、方差和标准差。此外,还有极差、平均差以 及测度相对离散程度的离散系数等。
8. 简述估计量的无偏性,有效性和一致性。
【答案】(1)无偏性 若估计量的数学期望等于未知参数
则称为的无偏估计量。估计量的值不一定就是的真值,因为它是 一个随机变量,若
是的无偏估计量,则尽管的值随样本的不同而变化,但平均来说它会等于的真值。
(2)有效性
设(3)—致性(相合性) 如果依概率收敛于则称
即有
是的一致估计量。 与且至少对于某一个都是的无偏估计量,若对于任意
上式中的不等号成立,则称较有效。 有即: