2017年湘潭大学材料科学与工程学院854材料科学基础(三)[专业硕士]考研导师圈点必考题汇编
● 摘要
一、名词解释
1. 热塑性和热固性高分子材料
【答案】高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶黏剂和高分子基复合材料等。高分子材料按其性能可分为热塑性和热固性高分子材料,其中,热塑性高分子材料可溶、可熔;热固性高分子材料不溶、不熔。利用加热和溶解的方法可将热固性和热塑性材料分辨出来,常用的识别高分子材料的简便方法有经验法、燃烧法、溶解法、仪器分析法等。
2. 配位数
【答案】配位数是指晶体结构中任一原子周围最邻近且等距离的原子数目。
3. 再结晶退火
【答案】再结晶退火是指经过塑性变形的金属,在重新加热过程中,当温度高于再结晶温度后,形成低缺陷密度的新晶粒,使其强度等性能恢复到变形前的水平,但其相结构不变的过程。
4. 异质形核
【答案】异质形核是晶核在液态金属中依靠外来物质表面(型壁或杂质)或在温度不均匀处择优形成的形核方式。
5. 致密度
【答案】致密度是表示晶胞中原子所占的体积与晶胞体积的比值,是衡量原子排列紧密程度的参数,致密度越大,晶体中原子排列越紧密,晶体结构越致密。
二、简答题
6. 示意画出n 型半导体电导率随温度的变化曲线,并用能带理论定性解释上述曲线。
【答案】(1)如图所示。
图
(2)n 型半导体中的载流子包括掺杂的施主电子及本征半导体固有的电子和空穴,但施主电子跃迁所需克服的能垒小于本征电子和空穴跃迁所需克服的能垒
①温度较低时,本征电子和空穴的热激活跃迀几率很小,而施主电子跃迁几率较大且随温度升高而呈指数增大,此时电导率主要由掺杂的施主电子提供。
②当施主电子全部跃迁或称耗竭,而本征电子和空穴的热激活跃迁几率仍然很小,载流子浓度几乎不随温度升高而变化,电导率几乎为常数。
③温度进一步升高,本征电子和空穴的热激活跃迁几率明显呈指数增大,电导率也随之呈指数增大。
7. 结晶、重结晶和再结晶三者在概念上有何区别?
【答案】结晶是指物质由液态变为晶体固态的相变过程。
重结晶是指在固态情况下,物质由一种结构转变成另一种结构,即同素异构反应。
再结晶是将冷压力加工以后的金属加热到一定温度后,在变形的组织中重新产生新的无畸变的等轴晶粒,性能恢复到冷加工前的软化状态的过程。
三者的区别与联系:结晶发生相变,重结晶发生固态相变过程,再结晶没有。但它们全部都有形核与核长大的过程。结晶发生的驱动力是液固两相的界面能差,重结晶的驱动力为新旧两相的自由能差,而再结晶为储存能。再结晶后强度硬度下降而塑性和韧性提高,重结晶后材料的强度、塑性、韧性都会改善。
8. 铸锭结晶过程中,晶区通常有几个,它们各自产生的原因是什么?
【答案】铸锭结晶过程中,通常有以下几个晶区:
(1)表面细晶区。其形成是由于铸模的强烈冷却作用,使表面层的过冷度很大,从而在表面产生很细的晶粒。
(2)柱状晶区。表面细晶区形成后,释放的结晶潜热使铸模温度升高,造成冷却作用下降。此时,过冷度减小,形核变得困难,只有细晶区中现有的晶体向液体中生长。在这种情况下,只有一次轴垂直于型壁(散热最快的方向)的晶体才能得到优先生长。
(3)中心等轴晶区。柱状晶生长到一定程度,由于前沿液体远离型壁,散热困难,冷速变慢,而
且熔液中得温差随之减小,这将阻止柱状晶的快速生长,当整个熔液温度降至熔点一下时,熔液中出现许多晶核并沿各个方向长大,就形成中心等轴区。
9. 体心单斜点阵是不是一个新的点阵?
【答案】做出体心单斜点阵的晶胞图,并通过其体心做出新的晶胞图,如图所示。可见,体心单斜点阵可以连成底心单斜点阵,因而不是新的点阵。
体心单斜点阵可连接成底心单斜点阵
10.关于扩散,请回答以下问题:(1)扩散可以分为哪几种基本类型?(2)固溶体中原子的扩散必须具备哪些基本条件?(3)在间隙固溶体中,溶质原子各以何种机制进行扩散?(4)均匀奥氏体晶粒的长大以及扩散退火时晶内偏析的均匀化各属于何种类型的扩散?
【答案】(1)根据扩散有无浓度变化,可以分为自扩散和化学扩散;根据扩散方向,可以分为上坡扩散和下坡扩散;根据是否出现新相,可以分为原子扩散和反应扩散。
(2)其基本条件为存在化学势梯度。
(3)以间隙扩散机制扩散,原子从一个晶格中间隙位置迁移到另一个间隙位置。
(4)均匀奥氏体晶粒的长大属于原子扩散,扩散退火时晶内偏析的均匀化属于化学扩散。
11.比较大角度晶界能与表面能的大小,并分析其原因。
【答案】大角度晶界能:断键以及临近层原子键变化产生的能量;表面能:原子键变化产生的能量。
一般来说,表面能大于大角度晶界能,面缺陷表面能是指金属与真空或气体、液体等外部介质相接触的界面,界面上的原子会同时受到晶体内部自身原子和外部介质原子和分子的作用力,而内部原子对外界面原子的作用力显然大于外部原子或分子的作用力,表面原子就会偏离其正常平衡位置,并牵连到邻近的几层原子,造成表面层产生较大的晶格畸变,即表面原子的结合键断开,产生较高的能量。
而大角度晶界是晶体内部相邻晶粒相差在l0°C 以上,部分原子的结合键发生变化而并未断开,引起的晶格畸变较小,故能量较低。
相关内容
相关标签