2018年深圳大学物理与能源学院718量子力学或光学之量子力学导论考研仿真模拟五套题
● 摘要
一、简答题
1.
写出角动量的三个分量【答案】这三个算符的对易关系为
2. 什么是定态?若系统的波函数的形式为处于定态?
【答案】体系能量有确定的不随时间变化的状态叫定态,定态的概率密度和概率流密度均不随时间变化. 不是,体系能量有E 和-E 两个值,体系能量满足一定概率分布而并非确定值.
问
是否
的对易关系.
二、计算题
3. 对于一个限制在边长为L 的立方体中的自旋为1/2、质量为m 的粒子,计算基态与第二激发态的本征能量及相应的本征态波函数.
【答案】这是一个三维方势阱问题,例子波函数为
S 为自旋波函数. 可分离变量得
最终解得
代表例子自旋朝上和朝下两种状态.
由于粒子自旋此时并不会对粒子能量产生影响,故
粒子能量基态:对应波函数为:例子第一激发态能量:对应波函数有:
第二激发态能量:对应波函数有:
4. 对于自旋的体系,求量
得
的概率和
的本征值和本征态,并在较小的本征值对应的本征态中,求测
的平均值。
设本征态
本征值为则:
【答案】
将代回原方程:
即:
所以,因此有:
同理可得:
的本征态
所以在
态中测量
的几率为:
5. 简述能量的测不准关系。
【答案】能量测不准关系的数学表示式为
即微观粒子的能量与时间不可能同时进行
准确的测量,其中一项测量的越精确,另一项的不确定程度越大。
6. 自旋为的一定域电子在均匀磁场子处 在
的本征态上,求t >0时测量
中运动,磁作用势为的可能取值及相应的几率。
设t=0时刻,电
【答案】的本征态矢与本征值为:
任意t 时的态矢为:
相关内容
相关标签