2018年南方医科大学312心理学专业基础综合之现代心理与教育统计学考研仿真模拟五套题
● 摘要
一、概念题
1. 分层随机抽样
【答案】分层随机抽样是抽样方式的一种。按照总体已有的某些特征,将总体分成几个不同的部分(层),再分别在每部分中随机抽样,这种抽样的方法称为分层随机抽样。总原则是:各层内的变异要小,层与层间的变异越大越好。分层抽样充分利用了总体己知的信息,其样本代表性及推论的精确性一般优于简单随机抽样。对于同一总体,n 相同时,分层抽样误差小于简单随机抽样误差。
2. 四分差
【答案】四分差又称四分位差,是差异量数的一种。计算公式:
位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。
3. 随机原则
【答案】随机原则指在进行抽样时,总体中每一个个体是否被抽取,并不由研究者主观决定,而是每一个体按照概率原理被抽取的可能性是相等的。由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能性使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的某些特征在样本中得以表现。这时可以说随机样本可以保证样本代表总体。
4. 二列相关
【答案】二列相关是一种两列变量的质量相关。适用的资料是两列均属于正态分布,但其中一列变量是等距或等比的测量数据,另一列变量虽然也呈正态分布,但它被人为地划分为两类,例如:健康与不健康的划分。这种相关适用于对项目区分度指标的确定。
二、简答题
5. 直条图适合哪种资料? 绘制直条图时应注意哪些问题?
【答案】条形图,又称直条图,主要用于表示离散型数据资料,即计数数据。它是以条形
的长短表示各事物间数量的大小与数量之间的差异。条形图中一个轴是分类轴,表示类别;另一个轴是数量轴,表示大小多少,描述计量数据。这个轴上数据单位的大小取决于原始数据。
绘制条形图需要注意以下几点:
(1)尺度须从零点开始,要等距分点,一般不能断开。
(2)条宽与间隔的比例要适当,条形图是以条形的长短表明数量的多少。
(3)直条的排列顺序可按时间序列、数量多少以及相比较事物的固有序列。
(4)图形区域中条形的顶端和下端尽量少用数据标签。
(5)调节过长条形有两种方法,一种是调整尺度,另一种是采用折叠法、回转法来调整条形本身。
6. 如果两总体中的所有个体都进行了智力测验,这两个总体智商的平均数差异是否还需要统计检验?为什么?
【答案】如果两个中体中的所有个体都进行了智力测验,这两个总体的智商的平均数差异还是需要进行统计检验。
因为,虽然表面上看来,当抽取全部总体时,样本统计量与总体参数相同。但是作为通过测量获得的数据(智力测验)本身就是通过行为抽样获得,因此应该把两总体的智商差异看作是对智商真值之间差异的抽样,因此还是需要进行统计检验的。
当两总体中的所有个体都进行了智力测验,但不能确定两个总体的分布的时候,直接做两个总体智商的平均数差异检验是不合适的。
智力测验中一般可以获得描述性统计数据。描述统计的方法获得了一组数据的集中量数,差异量数和相关量数(常称为样本统计量),它们仅代表了某一总体中的样本所具有的特征,在进行检验前,我们并不了解样本来自的总体是否具有相同的数值特征(总体中的相应数值称为参数,总体均值记为…总体标准差记为
进行推断,以获得总体的有关特征。
检验两个总体的平均数差异不仅要考虑总体分布和总体方差,还需要注意两个总体方差是否一致,两个样本是否相关以及两个样本容量是否相同等条件。两个总体均值差异的显著性检验是通过来自均值相同的总体的样本平均数差异进行推断的。因此,两个总体均值差异的显著性检验也就是检验两个样本平均数是否来自均值相同的总体。由于两个总体之间有时是相关的,有时是独立的,因此平均数差数的显著性检验也有不同的方法。
7. 如何区分点二列相关与二列相关?
【答案】(1)点二列相关法(point-biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个为“二分”称名变量(二分型数据)之间相关程度的统计方法。
二列相关法(biserail correlation)就是考察两列观测值一个为连续变量(点数据),另一个也是连续变量不过被按照某种标准人为的划分的二分变量之间相关程度的统计方法。
总体相关系数记为P )。然而,心理研究的目的是要了解样本来自的总体的特征。为此,可以运用参数统计检验法依据样本的特征对总体的特征
(2)点二列相关与二列相关的区别
二列相关不太常用,但有些数据只适用于这种方法。在测验中,二列相关常用于对项目区分度指标的确定。有时,某一题目实际获得的测验分数是连续性测量数据,这些分数的分布为正态,当人为地根据一定标准将其得分划分为对与错、通过与不通过两个类别时,计算该题目的区分度就要使用二列相关。如果题目的类型属于错与对这样的是非类客观选择题,计算该题目的区分度就应该选用点二列相关。二者之间的主要区别是二分变量是否为正态分布。总的原则是,如果不是十分明确,观测数据的分布形态是否为正态分布,这时,不管观测数据代表的是一个真正的二分变量,还是一个基于正态分布的人为二分变量,这时就用点二列相关。当确认数据分布形态为正态分布时,都应选用二列相关。只要有任何疑问,选用点二列相关总是较好的选择。在实际的研究当中,二列相关很少使用。
8. 简述点估计和区间估计。
【答案】参数估计分为点估计和区间估计。
(1)点估计指用样本统计量来估计总体参数的值,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。例如,对总体平均数的估计,用样本平均数一个好的估计量应该具备无偏性、有效性、一致性和充分性。由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来作估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义,而区间估计在一定意义上弥补了点估计的不足之处。
(2)区间估计指根据估计量以一定可靠程度推断总体参数所在的区间范围,是在点估计的基础上,用数轴上的一段距离表示未知参数可能落入的范围,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。区间估计涉及以下几个概念:
①显著性水平和置信水平
估计总体参数落在某一区间时,可能犯错误的概率,用符号
为置信度或置信水平。
②置信区间
在某一置信度时,总体参数所在的区域距离或区域长度称为置信区间。
区间估计的原理是样本分布理论。在计算区间估计值,解释估计的正确概率时,依据的是该样本统计量的分布规律及样本分布的标准误(SE )。样本分布可提供概率解释,而标准误的大小决定区间估计的长度。一般情况下,加大样本容量可使标准误变小。常见的有正态总体的均值和方差的区间估计等。
表示,也称为信任系数。
三、计算题
相关内容
相关标签