2018年华北理工大学生命科学学院705线性代数考研基础五套测试题
● 摘要
一、解答题
1. 已知实二次
型
的矩阵A ,满
足
且
其
中
(Ⅰ)用正交变换xzPy 化二次型为标准形,并写出所用正交变换及所得标准形; (Ⅱ
)求出二次型【答案】(Ⅰ)
由由
知,B
的每一列
满足
的具体表达式.
知矩阵A
有特征值即
是属于A 的特征值
.
则
与—
j 正交,于是有
令
的线性无关特征向
显然B 的第1, 2列线性无关
,量,从而知A
有二重特征值
设
对应的特征向量为
解得
将
正交化得:
再将正交向量组
单位化得正交单位向量组:
令
(Ⅱ
)由于
则由正交变换
故
第 2 页,共 41 页
化二次型为标准形
故二次型
2.
设三维列向量组
(Ⅱ)
当
【答案】(Ⅰ)由于4
个三维列向量全为0
的数
又向量组记
和向量组向量
线性表示.
使得
线性无关;
向量组
则
线性无关,
列向量组
线性无关.
和向量组
线性表示;
(Ⅰ
)证明存在非零列向量
使得
可同时由向量组
时,
求出所有非零列向量
构成的向量组一定线性相关,故存在一组不即,
线性无关,故
不全为0
,
即存在非零列向量
不全为0.
使得
可同时由向量组
所有非零解,即可得所有非零
的系数矩阵A 施行初等行变换化为行最简形:
(Ⅱ)易知,
求出齐次线性方程组下面将方程组
于是,方程组的基础解系可选为
_意非零常数.
因此,
所有非零列向量
第 3 页,共 41 页
所有非零解
_
t 为任
3. 设B
是
(I
)证明(II
)证明(III
)若【答案】⑴
矩阵
逆其中E 是n 阶单位矩阵.
且A 可对角化,
求行列式
(II )
(Ⅲ)设
则由
知
即
或1. 又存在可逆矩阵p ,
使或1.
4. 求个齐次线件JTP
技使它的场础解系由下列向量成.
【答案】由题意,
设所求的方程组为
由这两个方程组知,
所设的方程组的系数都能满足方程组的基础解系为
故所求的方程组可取为
将
代入得,
构
解得此方程组
二、计算题
5.
函数集合在V 3
中取一个基
的像,即可求得D 在上述基下的矩阵:
对于函数的线性运算构成3维线性空间.
求微分运算D 在这个基下的矩阵.
【答案】根据微分运算的规则,容易看出D
是中的一个线性变换,直接计算基向量在D 下
第 4 页,共 41 页
相关内容
相关标签