● 摘要
近年来, 基于偏微分方程和水平集方法的图像分割方法成为许多研究者关注的一个热点, 该方法实质是把曲线的演化转化为以水平集函数表达的偏微分方程数值求解问题. 其中~T. Chan~和~L. Vese~在~2001~年提出的~C-V~图像分割模型是一种经典的图像分割方法, 广泛应用于光学、医学图像的分割, 然而传统~C-V~图像分割模型在分割效率和准确性两方面存在一定的不足, 一些学者做了一定的改进, 如使用水平集函数通用的快速行进法、窄带法等方法, 虽然可以小幅度减少耗时, 但耗时依然很长, 且往往是解决了部分问题又引入了新的问题. 针对传统~C-V~图像分割模型在分割效率和准确性两方面的不足, 本文提出了一种改进的~C-V~ 图像分割模型: 一, 在模型中加入内部能量项, 使水平集函数始终保持为符号距离函数, 从而就可以克服水平集函数的重新初始化这一缺陷, 提高了图像分割的效率. 二, 选取~Heaviside~函数的新正则化函数, 使其逼近效果更佳, 提高了图像分割的准确性. 三, 用正实数函数去替换传统~C-V~模型中~Dirac~函数的正则化函数, 一方面, 消除了后者对非初始活动轮廓线附近同质区域边界检测的抑制作用, 进而使模型具有更好的全局优化特性, 提高了图像分割的准确性; 另一方面, 使得模型的计算更为简单, 提高了图像分割的效率. 数值实验表明本文提出的改进~C-V~图像分割模型提高了图像分割的效率与准确性.
相关内容
相关标签