当前位置:问答库>考研试题

2018年中国矿业大学(徐州)矿业工程学院860矿业运筹学之运筹学考研基础五套测试题

  摘要

一、填空题

1. 对于线性规划问题:MaxZ=CX.AX≦b.X ≧0,若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量, 且为该LP 的一个可行基,则对应于基B 的基可行解为:_____,该基可行解为最优解的条件是:_____。

【答案】,对于一切有。

【解析】若B=(P 1,P 2,…,P m )为A 中m 个线性无关的列向量,

此时令非基变量

, 这时变量的个数等于线性方程组的个数,用高斯消去法,可求得对应

于基B 的基可行解

为。由最优解的判别定理,若对于一

, 则所求得的基可 行解为最优解。

2. 在灵敏度分析时, 当LP 某系数发生变化使原最优单纯形表中的解为该LP 的一个正侧解,但不是可行解, 为求新的最优解, 处理办法是:_____。

【答案】对偶单纯形法

3. 网络中如果树的节点个数为z ,则边的个数为_____。

【答案】z-l

【解析】由树的性质可知,树的边数=数的节点数-1

4. 现有m 个约束条件,若某模型要求在这m 个条件中取”个条件作为约束,用,1变量来实现 该问题的约束条件组为:_____。

【答案】

【解析】0一l 变量取1时取该约束条件,否则不取,又一共取S 个约束条件。则可得到约束条件组为:

二、简答题

5. 说明本书所述货运车辆优化调度算法的原理和求解步骤,并绘出求解过程框图。请简要回答以下问题。

(1)若有两种车型的车可用,书中提出的模型应怎样修改? 在书中所提算法的启发下,试拟

定出一套求解的迭代步骤。

(2)你认为应如何将书中提出的模型和算法推广到多目标的情形。

【答案】①货运车辆优化调度算法的原理:最小费用最大流原理。求解步骤为:a. 仅考虑重载点,运用表上作业法求出最优解作为原问题的可行解; b. 进行解的扩展和解的收缩,直至得到可接受的可行解; c. 以该可接受的可行解为依据确定初始行车线路; d. 根据具体约束条件进行调整,直至得到最优行车路线。求解过程框图如图所示。

(2)修改后的迭代算法即神经网络(neural networks)算法。

①建立结合矩阵:将车辆经过的点包括源点看成神经网络的结点,即神经元,令神经元数目为Ni 神经元 和j 神经元的结合权值为,j 神经元的输出为r j 。

②将车辆调度的各种约束条件转化为约束能量函数为E 约。

③神经网络计算:令时刻t 神经元i 的输出为r i (t ),且r i (t )只能取0或1,令神经元i 的阈值为Q i ,则输出能量

为,因此总的能量函数

为如果

,其中,则该网络相对处于稳定状态。由于,且E 有界,系统必

趋向一个比较好的稳定状态,再把此稳定状态时r i (t ) 形成换位阵中元素为l 的结点连接起来,形成所求的最满意车辆调度线路。

④根据所形成的最满意线路来选择车辆调度方案。

(3)推广到多目标情形:车辆优化的目标函数可以有很多个,如总运费最小,司机总的驾驶时间最短,车 辆满载行驶的时间最长等; 而约束条件,如路径的最大输入输出流、车载量、发车和收车约束等。也可以加入惩 罚算子将约束条件转化为惩罚函数,利用多目标方法进行求解。 6. 考虑两个企业的资源整合问题。如果每个单位单独组织生产,各自的效益和,往往小于把两个单位的生 产要素进行重组,然后再统筹生产带来的收益高。因此,资产重组,往往能够带来“双赢”的格局,企业自身也 希望通过合并,做大做强。问题是,每个企业可能会故意夸大其利润水平,从而希冀分得更多的合作收益。请谈谈你的设想,用以协调 其中可能出现的问题(不超过300字,可用符号表述你的想法)?

【答案】让两个企业单独汇报独立生产能获得的利润,分别记为z 1、z 2。如果z 1+z2≦2成之,则将合作后的额外收益z-(z 1+z2),按照z 1、z 2的比例进行分配。这样的分配方式,两个企业说真话,是一个均衡策略。

7. 简述目标规划单纯形法求解的基本思想。

【答案】第一步,建立初始单纯形表,在表中将检验数行按优先因子个数分别列成K 行,置k=l;

第二步,检查该行中是否存在负数,且对应的前k 一1行的系数是零。若有负数取其中最小者对应的变量为换入变量,转第三步。若无负数。则转第五步;

第三步,按最小比值规则确定换出变量,当存在两个和两个以上相同的最小比值时,选取具有较高优先级别 的变量为换出变量;

第四步,按单纯形法进行基变换运算,建立新的计算表,返回第二步;

第五步,当k=K时,计算结束。表中的解即为满意解。否则置k=k+l,返回到第二步。 8. 什么是关于可行流f 的增广链?

【答案】设f 是一个可行流,v s 是网络的起点,v t 是网络的终点,

若满足下列条件:

(l )在弧(2)在弧称是关于可行流f 的一条增广链。 即即中每一前向弧是非饱和弧。 中每一后向弧是非零流弧。 是从v s 到v t ,的一条链,三、计算题