当前位置:问答库>考研试题

2018年重庆交通大学经济与管理学院812运筹学考研基础五套测试题

  摘要

一、选择题

1. 用单纯形法求解线性规划问题时,满足( )对应的非基变量xj 可以被选作为换入变量。

A. 检验数σ>0

B. 检验数σ<0

C. 检验数σ>0中的最大者

D. 检验数σ<0中的最小者

【答案】C

【解析】当某些σ>0时,xj 增加则目标函数值还可以增大,这时要将某个非基变量xj 换到基变量中去,为了使目标函数值增加得快,一般选择σ>0中的大者。

2. 关于对偶问题,下列叙述错误的有( )

A. 根据对偶问题的性质, 当原问题为无解时, 其对偶问题无可行解; 反之当对偶问题无可行解, 其原问题具有无界解。

B. 若线性规划的原问题有多重最优解,则其对偶问题也一定具有多重最优解。

C. 己知y 飞为线性规划的对偶问题的最优解,若y*j>0,说明在最优生产计划中第j 种资源己完全耗尽

D. 若某种资源的影子价格等于k ,在其他条件不变的情况下,当种资源增加5个单位时,相应的目标函 数只讲增大sk

【答案】A

【解析】当原问题(对偶问题)无可行解时,对偶问题(原问题)或具有无界解或无可行解。

3. 对于动态规划,下列说法正确的有( )

A. 在动态规划模型中,问题的阶段数等于问题中的子问题的数目

B. 动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性

C. 对一个动态规划问题,应用顺推成逆推解法可能会得出不同的最优解

D. 假如一个线性规划问题含有8个变量和6个约束,则用动态规划方法求解时将划分为6个阶段,每个阶 段的状态将有一个8维的向量组成

【答案】AB

【解析】对于一个动态规划问题,不论是采用顺推法还是逆推法,只能得到一个唯一的解; 假如一个线性规 划问题含有8个变量和6个约束,则用动态规划方法求解时将按照变量的个数划

分为8个阶段,每个阶段的状态 将有一个6维的向量组成。

4. 企业进行库存管理与控制的目标不包括以下( )。

A. 保证生产或销售的需要

B. 降低库存占用资金

C. 降低花在存储方面的管理费用

D. 较低的货损

【答案】D

【解析】货损与库存管理与控制无关,与采购的运输等其他环节有关。

二、填空题

5. Fibonacoi 法在[2,6]区间上取的初始点是_____。

【答案】,

【解析】由Fibonacci 的计算方法可知。

6. 某极小化线性规划问题的对偶问题的最优解的第1个分量为y l =-12,则该问题的第1个约束条件的右端常数项的对偶价格为:_____。

【答案】-12

【解析】由对偶问题的经济解释可知,原问题约束条件的右端常数项的对偶价格等于对偶问题的最优解中相 应的分量的值。

7. 最速下降法的搜索方向_____。

牛顿法的搜索方向为_____。

拟牛顿法的搜索方向为_____。

【答案】

【解析】最速下降法:

可以得出,

时,下降最快。

牛顿法:正定二次函

即搜索方向是

拟牛顿法

:(单位阵)

若 是最优点,

8. 网络中如果树的节点个数为z ,则边的个数为_____。

【答案】z-l

【解析】由树的性质可知,树的边数=数的节点数-1

三、判断题

9. 运输问题按照最小元素法给出的初始基可行解,从每一空格出发可以找出且仅能找出惟一的闭合回路。( )

【答案】√

【解析】从每一空格出发一定存在和可以找到惟一的闭回路。因(m+n-l)个数字格(基变量)对应的系数向量是一个基。任一空格(非基变量)对应的系数向量是这个基的线性组合。而这些向量构成了闭回路。

10.假如到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布。( )

【答案】√

【解析】设N (t ),为时间[0,t]内到达系统的顾客数,则{N(t ),t ≥0}为参数λ的普阿松流的充要条件是: 相继到达时间间隔服从相互独立的参数为λ的负指数分布。

11.若需将某工程项目工期缩短到了10天,简单可行的方法是:任意找出该项目网络中一条关键路线,采取 必要措施将其缩短到10天即可。

【答案】√

【解析】若网络计划图的计算工期大于上级要求的工期时,必须根据要求计划的进度,缩短工程项目的完工 工期。主要采取以下措施,增加对关键工作的投入,以便缩短关键工作的持续时间,实现工期缩短。 ①采取技术措施,提高工效,缩短关键工作的持续时间,使关键线路的时间缩短; ②采取组织措施,充分利用非关键工作的总时差,合理调配人力、物力和资金等资源。 12.如果图T 是树,则T 中一定存在两个顶点,它们之间存在两条不同的链。( )

【答案】×

【解析】连通且不含圈的无向图称为树。因此任意两点间必定只有一条链。

13.对于一个有n 个变量,m 个约束方程的标准线性规划SLP ,其基可行解的数目恰好是个。( )

【答案】×

【解析】其基解的个数最多是个,且一般情况下,基可行解的数目小于基解的个数。

四、证明题