2018年聊城大学教育科学学院312心理学专业基础综合之现代心理与教育统计学考研基础五套测试题
● 摘要
一、概念题
1. 差异系数
【答案】差异系数(),又称变异系数、相对标准差等,它是一种相对差异量,用CV 来表示,为标准差与平均数的百分比。在对不同样本的观测结果的离散程度进行比较时,常常遇到下述情况:两个或多个样本所测的特质不同。如何比较其离散程度?即使使用的是同一种观测工具,但样本的水平相差较大时,如何比较它们的离散程度?这时需要运用相对差异量进行比较。差异系数的计算公式是:(S 为某样本的标准差,M 为该样本的平均数)。差异系数在心理与教育研宄中常常应用于同一对象的不同领域或同一领域的不同对象。
2. 集中量数与差异量数
【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。
3. 次数
【答案】次数是指某一事件在某一类别中出现的数目,又称为频数(frequency ), 用f 表示。
4. 参数检验(parametric test)
【答案】参数检验是统计假设检验的一种。与“非参数检验”相对。适用于总体分布形式已知。且仅由少数几个参数便可确定的条件下。其检验方法常是基于正态性的假定,如t 检验、F 检验、正态线性回归、狭义多元分析等。其主要缺点在于,因其受到严格的关于正态性的条件限制,而大大制约了这类检验的应用或可信度的保证。
二、简答题
5. 哪些测量和统计的原因会导致两个变量之间的相关程度被低估。
【答案】影响两个变量之间的相关程度被低估的原因有:
(1)测量原因:测量方法的选择、两个变量测验材料的选择和收集、测量工具的精确性、测量中出现的误差、测验中主试和被试效应、测量的信度和效度、测验分数的解释等。
(2)统计原因:全距限制,指相关系数的计算要求每个变量内各个分数之间必须有足够大的差异,数值之间必须有显著的分布跨度或变异性,所以全距限制问题会导致低相关现象;没有满足计算相关系数的前提假设也会低估相关系数,比如用皮尔逊相关计算非线形关系的两个变量间的相关系数。
6. 简述卡方配合度检验和卡方独立性检验的区别。
【答案】卡方配合度检验主要用于检验单个名义型变量多个分类上的实计数和某个理论次数分布(如均匀分布)之间的差异显著性,因此可以将之理解成多组之间次数比较的方法;卡方独立性检验主要用于检验两个名义型变量各项分类上的次数之间是否存在显著关联,是考察名义型变量间相关性的方法。
7. 线性回归的基本假设是什么?
【答案】(1)线性关系假设
X 与Y 在总体上具有线性关系,这是一条最基本的假设。回归分析必须建立在变量之间具有线性关系的假设成立上。如果X 与Y 的真正关系不是线性,而回归方程又是按线性关系建立的,这个回归方程就没有什么意义了。非线性的变量关系,需使用非线性模型。
(2)正态性假设
正态性的假设系指回归分析中的Y 服从正态分布。这样,与某一个
量Y 的一个子总体,所有这样的子总体都服从正态分布,其平均数记作各个子总体的方差都相等。因此经由回归方程式所分离的误差项e ,即由特定与实际值对应的Y 值构成变方差记作所预测得到的之间的差距,也应呈正态分布。误差项e 的平均数为0。所以,也有人指出线性回归中应满足变量X 没有测量误差这一严格假设,但在实际中很难满足,常常只是对X 的测量误差忽略不计。
(3)独立性假设
①指与某一个X 值对应的一组F 值和与另一个X 值对应的一组7值之间没有关系,彼此独立。
②指误差项独立,不同的X 所产生的误差之间应相互独立,无自相关
误差项也需与自变量X 相互独立。
(4)误差等分散性假设
特定X 水平的误差,除了应呈随机化的常态分配,其变异量也应相等,称为误差等分散性。不相等的误差变异量(即误差变异歧异性,),反应出不同水平的X 与Y 的关系不同,不应以单一的回归方程式去预测Y 。当研究资料具有极端值存在时,或非线性关系存
在时,误差变异歧异性的问题就容易出现。违反假设时,对于参数的估计检验力就会变得不足。
8. 根据不同条件下,不同统计量的假设检验方法,试概括出假设检验的基本过程。
【答案】假设检验的基本过程有:
而
(1)提出虚无假设和备择假设;
(2)选择检验的统计量并计算其值;
(3)确定显著性水平及临界值;
(4)作出统计决断;
(5)报告结果。
三、计算题
9. 有容量分别为的独立随机样本得到下述观测结果,(X 、Y 为观测值,f 为频数):
现已知变量X 、Y 的总体均呈正态分布。请问在0.05的显著性水平下,可否认为这两个总体和
【答案】(1)对原始数据进行描述统计
(2)由于两总体的方差未知,因此需要先进行方差齐性检验。 ①提出假设即两总体方差齐性
即两总体方差不齐性
②选择检验的统计量并计算其值
③确定显著性水平及临界值
当α=0.05时,
④作出统计决断 因为①提出假设所以接受即两总体方差齐性。 (3)两总体方差齐性因此按照两总体方差齐性的独立样本平均数差异检验进行。 即两个总体属于同一分布。
即两个总体不属于同一分布。
(2)选择检验的统计量并计算其值
(3)确定显著性水平及临界值
属同一分布?提示
: