2018年中国医科大学第一临床学院312心理学专业基础综合之现代心理与教育统计学考研核心题库
● 摘要
一、概念题
1. 四分差
【答案】四分差又称四分位差,是差异量数的一种。计算公式:
位数,第三个四分第一个四分位数。在次数分配上第一个四分位数与第三个四分位数之间包含着全体项数的一半。次数分配越集中,离中趋势越小,则这二者的距离也越小。根据这两个四分位数的关系,观测次数分配的离散程度也可以得到相当高的准确性。因此,四分差可以说明某系列数据中间部分的离散程度,并可避免两极端值的影响。四分差通常与中数联系起来共同应用,不适合进一步代数运算,反应不够灵敏。
2. 推论统计
【答案】推论统计又称推断统计,主要研宄如何通过局部数据所提供的信息,推论总体或全局的情形;如何对假设进行检验和估计;如何对影响事物变化的因素进行分析;如何对两件事物或多种事物之间的差异进行比较等。这是推论统计要研宄的内容,常用的统计方法有:假设检验
的各种方法、总体参数特征值的估计方法(又称总体参数的估计)和各种非参数的统计方法等等。
3. 集中量数与差异量数
【答案】集中量数与差异量数都是描述一组数据特征的统计量。集中量数是表现数据集中性质或集中程度的,数据的集中情况指一组数据的中心位置;集中趋势的度量即确定一组数据的代表值,描述集中情况的度量包括:算术平均数、中位数、众数、几何平均数、调和平均数和加权平均数等。差异量数是表现数据分散性质或分散程度的,数据的差异性即为离中趋势;常见的差异量数有标准差或方差、全距、平均差、四分差和各种百分差等。
4. 概率
【答案】概率(probability ),概率论术语指,随机事件发生可能性大小度量指标。①概率描述性定义。随机事件A 在所有试验中发生可能性大小的量值,称为事件A 的概率,记为P (A )。如将一枚均匀硬币上抛足够多次,会发现“正面朝上”的事件出现的频率在0.5上下波动。这种频率稳定性从实践上表明随机事件的概率是客观存在的。②概率的精确定义。设P 是定义在“事件域”上的一个集合函数,若满足下列条件,则称之为概率:
a.P
两互不相容对一
切,则
(性质(ⅲ)称为完全可加性)。若P 是概率,则不可能事件的概率为零,
即对任意事件有应当注意,若P (A )=0, 并不能说A —定是不可能事件,即不可能事件的概率一定是零,但概率为零的事件未必是不可能事件。这是由于P 是集合函数,可能在某些点集上(如有限个点)为零。同理,概率为1的事件,未必是必然事件。
二、简答题
5. 简述方差分析法的步骤。
【答案】方差分析法的步骤是:
(1)和一般的假设检验一样设立零假设和研究假设;
(2)根据实验设计的类型确定各变异源,进行相应的平方和分解,即有几个变异源就从总平方和中分解出几个平方和;
(3)根据平方和分解得到各变异源对应的自由度,即进行总自由度的分解;
(4)根据研究的目的和实验设计考虑要检验什么效应,从而将其对应的平方和比上相应的自由度得到该效应的均方,其中误差均方必须计算;
(5)将各待检验效应的均方比上误差的均方,计算各F 统计量;
(6)将计算来的各F 统计量值和F 检验的临界值进行比较得出统计结论,其中临界值的分子自由度和分母自由度分别是待检验效应的自由度和误差自由度;
6. 度量离中趋势的差异量数有哪些? 为什么要度量离中趋势?
【答案】(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性
在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。这些特殊性常表现为数据的变异性。因此,只用集中量数不可能真实地反映出它们的分布情形。为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
7. 探索性因素分析与验证性因素分析有什么区别?
【答案】(1)探索性因素分析(简写为EFA )就是指传统的因素分析。这种因素分析方法对于观察变量因子结构的寻找,并未有任何事前的预设假定。对于因子的抽取、因子的数目、因子的内容以及变量的分类,研究者也没有事前的预期,而是由因素分析的程序去决定。在典型的EFA 中,研究者通过共变关系的分解,找出最低限度的主要成分()或共同因子(),然后进一步探讨这些主成分或共同因子与
, )个别变量的关系,找出观察变量与其相对应因子之间的强度,也就是因子负荷值
(
以说明因子与所属的观察变量的关系,决定因子的内容,为因子取一个合适的名字。
由于传统的因素分析企图找出最少的因子来代表所有的观察变量,因此研究者必须在因子数目与可解释变异量()两者间寻找平衡点。因为因素分析至多可以抽取出相等于观察变量总数的因子数目,这样,虽然可以解释全部百分之百的变异,但失去因素分析找寻因子结构的目的,但如果研究者企图以少数几个较明显的因子来代表所有的项目,势必然将损失部分可解释变异来作为代价。因而在EFA 中,研究者相当一部分工作是在决定因子数目与提高因子解释的变异(即
(2)验证性因素分析()。 简写为CFA )是在研究人员积极改善传统因素分析的限制,扩大其应用范围的基础上产生的。这类因素分析要求,研究者对于潜在变量的内容与性质,在测量之初就必须有非常明确的说明,或有具体的理论基础,并已先期决定相对应的观察变量的组成模式,进行因素分析的目的是为了检验这一先期提出的因子结构的适合性。这种因素分析方法也可用于理论架构的检验,它在结构方程模型中占有相当重要的地位,有着重要的应用价值,也是近年来心理测量与测验发展中相当重视的内容。
8. 各种差异量数各有什么特点?
【答案】(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。当组距不确定,其他差异量数都无法计算时,可以计算四分位差。但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
通过比较,可以发现标准差、方差价值较大,它们的应用也比较广泛,因此,一般称标准差、方差为高效差异量。相比较而言,其他差异量数,如全距、平均差、百分位差和四分位差等缺点比较明显,应用也受到限制,故称他们为低效差异量数。
三、计算题
相关内容
相关标签