当前位置:问答库>考研试题

2018年江西师范大学心理学院312心理学专业基础综合之现代心理与教育统计学考研仿真模拟五套题

  摘要

一、概念题

1. 个体

【答案】个体(individual )亦称“单位”、“样品”,统计学术语指总体中的每一个单位、样品或成员。是统计调查、试验或观测的最基本对象,是构成样本、总体的最小单元。在心理学研宄中,个体根据研宄目的不同,可以是人,也可以是人在某种实验条件下的某个反应,或每个实验结果、每个数据。

2. 标准误差

【答案】标准误差指描述样本均值对总体期望值的离散程度的统计量。指样本平均数与总体平均数之间的误差,即随机抽样误差分布的标准差。样本平均数的标准误差与总体标准差成正比,与样本的容量的平方根成反比。公式为:式中为总体标准差,N 为样本的大小。标准误差是具体描述样本平均数的抽样误差的。标准误误愈大,抽样误差愈大,则样本平均数越不可靠;反之,标准误差越小,表明样本误差愈小,样本平均数越可靠。

3. 古典概率

【答案】古典概率也叫先验概率,是指在特殊情况下直接计算的比值。计算方法是事件A 发生的概率等于A 包含的基本事件数M 与基本事件总数N 之比。古典概率是最简单的随机现象的概率计算,建立在这样几个特定条件上的,即:事件的互斥性、事件的等概率性以及事件组的完备性。

4. 检验的显著性水平

【答案】检验的显著性水平指在假设检验中,虚无假设正确时而拒绝虚无假设所犯错误的概率。在假设检验中有可能会犯错误,如果虚无假设正确却把它当成错误的加以拒绝,犯这类错误的概率用a 表示,a 就是假设检验中的显著性水平。通常选择α=0.05作为检验的显著性水平。也就是说每当实验结果发生的概率小于或等于0.05的时候,就拒绝虚无假设。

二、简答题

5. 简述条形图与直方图的区别。

【答案】条形图与直方图的区别:

①描述的数据类型不同。条形图用来描述称名型数据或计数数据,而直方图主要用来描述

分组的连续性数据;

②表示数据多少的方式不同。条形图用直条的长短或高低表示数据的多少和大小,而直方图用面积表示数据的多少和大小。直方图的总面积与总次数相等;

③坐标轴上的标尺分点意义不同。条形图的一个坐标轴是分类轴,而直方图的一个坐标轴上表示的是另一个刻度值;

④图形直观形状不同。条形图之间有间隔,直条与直条之间的间隔大小没有任何关系,不表示任何意义。直方图各个直方块之间紧密相接,没有间隙,当在某一数据上面分布的人数极少或没有,会出现断点。因此,在使用过程中,要注意二者之间的区别。

6. 简述条图、直方图、圆形图(饼图)、线图以及散点图的用途。

【答案】这几种图是统计学中最常用的图形,条图和直方图都用于表示变量各取值结果的次数或相对次数,即次数分布图。不同的是前者用于离散或分类变量,后者用于连续变量(分组后)。圆形图用于表示离散变量的相对次数,即频率,整个圆面积为1,各扇形块表示各类别的频率。线图用于表示连续变量在某个分类变量各水平上的均值,如各年级的考试成绩均分,常用于组间比较中。散点图用于两连续变量的相关分析,可将两变量成对数据的值作为横、纵坐标标于图上,根据散点的形状可以大致判断两变量是否存在相关以及相关的程度。

7. 简述点估计和区间估计。

【答案】参数估计分为点估计和区间估计。

(1)点估计指用样本统计量来估计总体参数的值,因为样本统计量为数轴上某一点值,估计的结果也以一个点的数值表示,所以称为点估计。例如,对总体平均数的估计,用样本平均数一个好的估计量应该具备无偏性、有效性、一致性和充分性。由于估计量是一个随机变量,所以点估计以随机变量中的某一个值来作估计,很显然会产生一定的误差。若误差较小,这个点估计值还是一个好的估计值,若误差较大,这个点估计便失去了意义,而区间估计在一定意义上弥补了点估计的不足之处。

(2)区间估计指根据估计量以一定可靠程度推断总体参数所在的区间范围,是在点估计的基础上,用数轴上的一段距离表示未知参数可能落入的范围,不仅给出一个估计的范围,使总体参数包含在这个范围之内,而且还能给出估计精度并说明估计结果的有把握的程度。区间估计涉及以下几个概念:

①显著性水平和置信水平

估计总体参数落在某一区间时,可能犯错误的概率,用符号

为置信度或置信水平。

②置信区间

在某一置信度时,总体参数所在的区域距离或区域长度称为置信区间。

区间估计的原理是样本分布理论。在计算区间估计值,解释估计的正确概率时,依据的是该样本统计量的分布规律及样本分布的标准误(SE )。样本分布可提供概率解释,而标准误的

表示,也称为信任系数。

大小决定区间估计的长度。一般情况下,加大样本容量可使标准误变小。常见的有正态总体的均值和方差的区间估计等。

8. 一个变量的两个水平间的相关很高,是否说明两水平的均数间没有差异呢?为什么?举例说明。

【答案】不能说明两水平的均数间没有差异。

(1)相关关系是指两类现象在发展变化的方向与大小方面存在一定的关系,但不能确定两类现象之间哪个是因,哪个是果。相关的情况可以有三种:一种是两列变量变动方向相同,即一种变量变动时,另一种变量也同时发生或大或小与前一种变量同方向的变动,称为正相关。如身高与体重的关系。第二种相关情况是负相关,这时两列变量中若有一列变量变动时,另一列变量呈或大或小但与前一列变量指向相反的变动。例如初打字时练习次数越多,出现错误的量就越少。第三种相关是零相关,即两列变量之间无关系。比如学习成绩与身高的关系。

(2)当一个变量的两个水平的相关很高时,需要考虑这种相关是正相关还是负相关,即考虑其变化发展的方向。

(3)当一个自变量的两个水平的相关很高时,不能说明两个水平的均数之间没有差异。因为两组变量的相关系数大小只是表明两组的线性关系强弱。即使两组变量成完全正相关,即相关系数为+1,也不能说明两组变量的平均数没有差异。比如两组变量的对应关系

为即这时两组变量的相关系数为+1,而两组变量的均数不不

同的。因为这是在同一个变量的不同水平,而且缺乏足够的信息分析。如果要知道这两个水平均数之间是否有差异,可以采用t 检验等方法获得。

三、计算题

9. 有24对被试按匹配组设计,分别进行集中识字和分散识字教学。假设除了教学方式的不同之外,其他条件两组均相同,结果考试检查时,“集中”组

分,分,分;“分散”组)? 分,试问两种识字教学效果有否显著差异(己知两组结果之间相关系数

【答案】假设实验数据服从正态分布。被试按照匹配组设计,因此为相关样本,且相关系数已知。问题为是否有显著差异则用双侧检验。

(1)提出假设即两种识字教学效果没有显著差异

即两种识字教学效果有显著差异

(2)选择检验的统计量并计算其值

(3)确定显著性水平及临界值

当α=0.05时,