2017年桂林电子科技大学材料科学与工程学院909材料科学基础(B)[专业硕士]考研题库
● 摘要
一、简答题
1. 举例或画图说明什么是小角晶界的位错模型?描述大角晶界有何模型?其含义是什么?
【答案】(1)小角晶界主要是指相邻晶粒位相差小于10°的晶界,而根据相邻晶粒之间位相差的形式不同又可将其分为倾斜晶界、扭转晶界和重合晶界等。
对称倾斜晶界可看做把晶界两侧晶体互相倾斜的结果,其晶界结构可看是由一列平行的刃型位错所构成,位错的间距与柏氏矢量之间的关系为
不对称倾斜晶界结构可看成由两组柏氏矢量相互垂直的刃型位错交错排列而成。
扭转晶界可看成是两部分晶体绕某一轴在一个共同的晶面上相对扭转一个0角所构成的,扭转轴垂直于这一共同的晶面,其结构可看成由互相交叉的螺型位错所组成。
(2)大角度晶界多为多晶体材料中各晶粒之间的晶界。大角度晶界上原子排列比较紊乱,但也存在一些比较整齐的区域,因此其晶界可看成由坏区与好区交替相间组合而成,主要有“重合位置点阵”模型、非晶模型和小岛模型。
2. 分析M 点的析晶路程(表明液、固相组成点的变化,并在液相变化的路径中注明各阶段的相变化和自由度数)。
【答案】液相:
固相:
3. 何谓陶瓷?从组织结构的角度解释其主要性能特点。
【答案】陶瓷主要是由无机非金属作为基体组分组成的。以共价键或离子键为主,在共价键结合的陶瓷中,原子之间是通过共用电子对形式进行键合的,具有方向性和饱和性,且键能相当高,陶瓷主要是由高硬度高脆性的特殊氧化物、碳化物、氮化物等化合物为主要组成相的一类材料。 由于这些化合物中的结合键以共价键或离子键为主,键合力稳定并且很强,故陶瓷材料具有熔点高,热膨胀系数小,硬度高,抗氧化、耐腐蚀,高温强度高,良好的光学特性和绝缘性等特性;但由于烧结及制备工艺等原因,陶瓷材料中难免存在气孔或微裂纹,故陶瓷材料的脆性大,强度低且易存在缺陷。
4. 金属的加工硬化特性对金属材料的使用带来哪些利弊?
【答案】有利方面:作为提高金属材料强度的一种手段;便于金属材料塑性成形;使金属零件得以抵抗偶然过载。不利方面:使金属难以进一步冷塑性变形。
5. 高分子材料按受热的表现可分为热塑性和热固性两大类,试从高分子链结构角度加以解释。
【答案】热塑性:具有线性和支化高分子链结构,加热后会变软,可反复加工再成形;热固性:具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦定型后不能再改变形状,无法再生。
6. 液态金属在结晶时如何细化晶粒?
【答案】常用的方法有:
(1)增加过冷度。可以增加结晶的驱动力,
降低临界形核功
增加形核率;
(2)变质处理。烧注前加入形核剂,利用异质形核来细化晶粒;
(3)机械(或电磁)振动、搅拌。
总之,增加形核率,降低长大速度,就可以细化晶粒。
7. 谈谈你对高强度材料的理解。
【答案】对于结构材料,最重要的性能指标之一是强度。强度是指材料抵抗变形和断裂的能力,提高材料的强度可以节约材料,降低成本。人们在利用材料的力学性能时,总是希望所使用的材料具有足够的强度,人们希望合理运用和发展材料强化方法,从而挖掘材料性能潜力的基础。 从理论上讲,提高金属材料强度有两条途径:
(1)完全消除内部的位错和其他缺陷,使它的强度接近于理论强度。目前虽然能够制出无位错的高强度金属晶须,但实际应用它还存在困难,因为这样获得的高强度是不稳定的,对操作效应和表面情况非常敏感,而且位错一旦产生后,强度就大大下降。
(2)在金属中引入大量的缺陷,以阻碍位错的运动,例如金属材料的强化手段一般有固溶强化、细晶强化、第二相粒子强化、形变强化等。综合运用这些强化手段,也可以从另一方面接近理论强度,例如在铁和钛中可以达到理论强度的38%。
8. 请画出金属单晶体的典型应力-应变曲线,并标明各阶段。铝(层错能约为
钢(层错能约为
区别?
【答案】(1)单晶体的应力-应变曲线如图所示,各阶段如图中标注所示。 减小临界晶核半径和不锈哪一种材料的形变第III 阶段开始得更早?这两种材料滑移特征有什么
图
(2)第III 阶段是抛物线型硬化阶段,主要机制之一是在塞积群中的螺位错交滑移,塞积群前的应力集中得以释放,故使硬化率下降。可见,越容易交滑移的材料第III 阶段开始越早。
铝的层错能高,位错一般不能扩展,其螺位错容易交滑移;不锈钢层错能很低,位错通常都会扩展,不容易交滑移。比较来看,铝的形变第III 阶段开始得更早。