当前位置:问答库>考研试题

2017年桂林理工大学理学院统计学复试实战预测五套卷

  摘要

一、简答题

1. 简述古典概率法和经验概率法如何定义事件发生的概率。

【答案】概率的古典定义是,如果某一随机试验的结果有限,而且各个结果出现的可能性相等,则某一事件A 发生的概率为该事件所包含的基本事件数m 与样本空间中所包含的基本事件数n 的比值,记为:

经验概率又称主观概率,是指对一些无法重复的试验,只能根据以往的经验,人为确定这个事件的概率。

2. 在多元线性回归中,为什么我们对整个回归方程进行检验后,还要对每个回归系数来进行检验呢?

【答案】在多元线性回归中,线性关系检验主要是检验因变量同多个自变量的线性关系是否显著,在个自变量中,只要有一个自变量与因变量的线性关系显著,F 检验就能通过,但这不一定意味着每个自变量与因变量的关系都显著。回归系数检验则是对每个回归系数分别进行单独的检验,它主要用于检验每个自变量对因变量的影响是否都显著。如果某个自变量没有通过检验,就意味着这个自变量对因变量的影响不显著,也许就没有必要将这个自变量放进回归模型中了。

3. 下列调查问卷中的提问都有问题,请修改。

(1)您和您爱人是否对现有住房满意?

(2)您最近一次是几点上班的?

(3)绝大多数喝过明光牛奶的人都认为它口味纯正,您认为是这样的吗?

【答案】(1)您对现有住房满意吗?您爱人呢?

(2)您最近一次的工作是几点上班?

(3)您认为明光牛奶的口味纯正吗?

4. 在什么条件下用正态分布近似计算二项分布的概率效果比较好?

【答案】当样本量n 越来越大时,二项分布越来越近似服从正态分布。这时,二项随机变量的直方图的形状接近正态分布的图形形状。即使对于小样本,当

然相当好,此时随机变量X 的分布是相对于其平均值

大于或等于5时,近似的效果就相当好。

第 2 页,共 42 页 时,二项分布的正态近似仍和都对称的。当p 趋于0或1时,二项分 只要当n 大到使布将呈现出偏态,但当n 变大时,这种偏斜就会消失。一般来说,

5. 简述概率抽样与非概率抽样的区别。

【答案】(1)概率抽样也称随机抽样,是指遵循随机原则进行的抽样,总体中每个单位都有一定的机会被选入样本。

非概率抽样是相对于概率抽样而言的,指抽取样本时不是依据随机原则,而是根据研宄目的对数据的要求, 采用某种方式从总体中抽出部分单位对其实施调查。

(2)概率抽样与非概率抽样的区别:概率抽样是依据随机原则抽选样本,这时样本统计量的理论分布是存 在的,因此可以根据调查的结果对总体的有关参数进行估计,计算估计误差,得到总体参数的置信区间,并且在 进行抽样设计时,对估计的精度提出要求,计算为满足特定精度要求所要的样本量。而非概率抽样不是依据随机 原则抽选样本,样本统计量的分布是不确切的,因而无法使用样本的结果对总体相应的参数进行推断。

6. 利用增长率分析时间序列时应注意哪些问题?

【答案】在应用増长率分析实际问题时,应注意以下几点:

(1)当时间序列中的观察值出现0或负数时,不宜计算增长率。这是因为对这样的序列计算增长率,要么不符合数学公理,要么无法解释其实际意义;

(2)在有些情况下,不能单纯就增长率论増长率,要注意增长率与绝对水平的结合分析。

二、计算题

7. 独立重复地抛公平骰子2次,设表示出现1或2点的次数,表示出现6点的次数。

(1)求二兀随机变量的联合分布与边际分布;

(2)求与的相关系数。

【答案】(1)的边际分布:

的边际分布

二元随机变量的联合分布:

第 3 页,共 42 页

(2)由(1)的表中的数据可得到:

8. 某银行为缩短顾客到银行办理业务等待的时间,准备采用两种排队方式进行试验:一种是所有顾客都进 入一个等待队列;另一种是顾客在三个业务窗口处列队三排等待。为比较哪种排队方式使顾客等待的时间更短,两种排对方式各随机抽取的9名顾客,得到第一种排队方式的平均等待时间为分钟,标准差为分钟,第二种排队方式的等待时间(单位:分钟)如下:

(1)画出第二种排队方式等待时间的茎叶图。

(2)比较两种排队方式等待时间的离散程度。

(3)如果让你选择一种排队方式,你会选择哪一种?试说明理由。

【答案】(1)第二种排队方式等待时间的茎叶图如图所示。 叶单位

图 第二种排队方式等待时间的茎叶图

(2)第二种排队方式等待时间的均值为:

标准差为:

第一种排队方式的均

值分钟,标准

第 4 页,共 42 页

分钟,则离散系数