2018年厦门大学能源学院820量子力学考研强化五套模拟题
● 摘要
一、简答题
1. 扼要说明:
(1)束缚定态的主要性质。
(2)单价原子自发能级跃迁过程的选择定则及其理论根据。
【答案】(1)能量有确定值。力学量(不显含f )的可能测值及概率不随时间改变。 (2)选择定则:
理论根据:电矩m 矩阵元
2. 自旋可以在坐标表象中表示吗?
【答案】自旋是内禀角动量,与空间运动无关,故不能在坐标空间表示出来。
3. 简述波函数的统计解释。
【答案】波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
4. 写出泡利矩阵。 【答案】
5. 现有三种能级【答案】
请分别指出他们对应的是哪些系统。
对应一维无限深势阱;
对应
对应中心库仑势系统,例如氢原子;
一维谐振子.
6. 坐标分量算符与动量分量算符的对易关系是什么?并写出两者满足的测不准关系。 【答案】对易关系为
测不准关系为
7. 有人说“在只考虑库仑势场情况下,氢原子原有本征态都存在实的轨道波函数”,你是否同意这种说法, 简述理由。
【答案】不同意。因为
8. 什么是塞曼效应?什么是斯达克效应?
第 2 页,共 39 页
为实函数,但可以为复函数。
【答案】塞曼效应是原子在外磁场中光谱发生分裂的现象;斯达克效应是原子在外电场作用下光
谱发生分裂的现象。
9. 完全描述电子运动的旋量波函数为
分别表示什么样的物理意义。
【答案
】
表示电子自旋向
下
表示电子自旋向上
的几率。
它的本征值
位置
在
处的几率密度
;
试述
及
10.假设体系的哈密顿算符不显含时间,而且可以分为两部分:一部分是(非简并)和本征函数
已知:另一部分
很小,可以看作是加于
上的微扰. 写出在非简并
状态下考虑一级修正下的波函数的表达式? 及其包括了一级、二级能量的修正的能级表达式。 【答案】
一级修正波函数为二级近似能量为其中
二、计算题
11.设
是
(1)计算(2)计算
并将结果表示为三个泡利矩阵的线性组合(要求给出组合系数)。 的本征态
试证该态与的方向无关,即由不同得到
方向的单位矢量,在表象中
,
(3
)设两电子自旋态为的态最多相差相因子。 【答案】⑴
(2)设的本征值为,本征矢为
则:
第 3 页,共 39 页
解久期方程将
,可得:
分别代入本征方程,得到与对应的本征矢为:
与对应的本征矢为:
表示为:
(3)利用矩阵直积的知识,可将
因此,对任意
倍。得证
得到的与态只相差
的微扰作用。
12.粒子在一维无限深势阱中运动. 设该体系受到(1)利用微扰理论求第n 能级的准至二级的近似表达式. (2)指出所得结果的适用条件. 【答案】(1) 一维无限深方势阱:体系的零级近似波函数和零级近似能量
求到二级,矩阵元一般形式
则第n 能级的二级近似能量
第 4 页,共 39 页